How To Exam?

a knowledge trading engine...


Veer Narmad South Gujarat University 2011-1st Year B.Sc Mathematics SB-0616 - 1 ( New ) - Question Paper

Saturday, 27 April 2013 09:40Web



SB-0616

First Year B.Sc./B.A. Examination

March/April - 2011 Mathematics : Paper - I

(Algebra, Trigonometry & Vector Calculas) (New Course)

[Total Marks : 105

Time : 3 Hours]


(il

nLal    PuiKhloft [cpiffl    SMcft.

Fillup strictly the details of signs on your answer book.

Name of the Examination :

F. Y. B.Sc./B.A.

Name of the Subject:

Mathematics : Paper - 1 (New)

Student's Signature


-Subject Code No.:

0

6

1

6

-Section No. (1,2,.....): Nil

(0 HHl V    d.

(3) WSll %|Rei *1$ U&Vtl d.

M *lMd

*1 (*i) HLHL WH C-lHL :

(*l) i HL5l H.HH C-IHL

(0 tan a i a dl UUVilHl pRdl <HHl.

(3) Log x -ft &Hd <HHl.

(y) Htalldl hRsUH *U[ctdl (3K1 d Hl ?

M %{P**]}=............

Oh) ddldl oiSldl Md WIH *UUl :

*lo


HIS p()

4

12


(0 A dl eil&felS -2, -2 *id 4 <&H dl A

(3) x = cosh2 0 + sinh2 0, y = 2 sin h0. cosh 0    Hlfl 0

Od*Hd

(x) ifcld    sin2x + /sinh2j = 2sin(x + /j).cos(x-/j) .

(h)    a = (x + 3_y)z + (_y-3z)j + (x-2z)k lddlei 9 ?

(h) cos w 0 Hd sin0 cos 0 Hd sin 0'{I US.W.I&Hi fedl 6 (w n HdlU d.)

(h) ifcld 3Ri tan-1 (cosh0-sinh0) = sin-1 (sec/z 0).    6

0 + 2 sin0 -sin30 25

U) aifad & lim :q = _T7.    ?

e->0 0 +tan 0-tan 20 14

H*l<U

(*l) cos a a dl Ufciq.eG.Hi. fafcWSl Hiqi.    e

(wi a    d.) (h) lOid s$l I    e

(2 cosh 0 -1) (2 cosh 20 -1) (2 cosh 40 -1) (2 cosh 0 +1) = 2 cosh 80 + 1

U) % xr = cosyy2rj + i sm\y2rj, r = 1,2,3..... 6LH dl RilOid 6

Xj.X2.X3........Hdd G. = COS 71 .

(*l) Log(a + i$) -ft &Hd #fl (viia,PeR).    e

eiQ

(<h) ,_k    =>Hd SKUfaS ?H?LLHL Pwtafd $l.    6

r -1


3 + i


($) ilOid & I Tan


v 2


= -{(4 + l)7T + /log3j _


H*l<U

3 (?h)    UHH <HHl 5Hd lOid 5Hd d U**ft Cos0 Hd sin0d 6

Uidlih [iHdl U %|M.

(h) % a + / (3 = sin-1 (w + iv) 6LH dl *llfad iii I s[n a ?Hd    6

cosh2(3 fter Ah =*hs    x2 ~(i+u2 + v2)jx+u2 =o d.

(is) RilOid    log sin (x + iy) = j/ log CSh 2y CS 2*    

7 z 2

+/ tan-1 (cotx- tanh j).

X (*l) lOid S$L I && *\\m A d ?Hd-H P + i Q    6

q.4 %iWl %i$ih d, vii P =*Hd Q    d.

(*0

U)

M

U)

H (h)

M

U)


1/ r _ 3/ 72 /2

x-2y = \ 3y + z = 0

H*l<U


d*U


d 6R-%flHK    %lWl.


1 3 0 3 -2 -1 0 -1 1


*lfel A =

' 3

-6

2

-f

-2

4

1

3

0

0

1

1

1

-2

1

0

' 1

2

1

2

3

2

3

2

-1

-3

0

4

0

4

-1

-3

"-1

2

-3

2

1

0

dl

4

0

5

Hia P() Hiql.


% /I = [//] Wl aij=ixjgin dl %lWl A PHd *lfel d.

5Hd % atj = i2- j2 61H dl %lWl i A feifad d.

n- ?H5d    *U[ct?Hl Ax X = d*U A2 X = B2

WR    S<klH ? %lWl


(*l) % A Hd B    aftl *lfell <&H dl %lWl i A~1B 6

=*Hd BA_1di SlWlfelS <*CLl *RHl <&H d.

(0 *UPld I ?HLHei HlcH &[Ul X d *i3ld $5d <?f

3HkH-\6H UAH UH d.


(3HHPL Md Hiql.

"flat ?HLHC-il    HUfrSllH (H) [dd 6M :

x + j-3z + 2w = 0 2x - j + 2z - 3w = 0 3x - 2j + z - 4w = 0 4x + y -3z + w = 0


HIS M-ted H.HH'j. &Hld


2x + 3y + 2z = 3 3_y + z = 0 x - 2y = I


(*l) y.LHd

x + y + z = 6 x + 2y + 3z = 10 x + 2y + Xz = \i

-ft *U[cW X H &Hdl Hia (*l) 6kl d*ft ?

(0 =*Hd-H 6kl d ?

(3) 6M d ?

-6

7

-4


2

-4

3


(H) *lfel =-4


di eilSlfelS 6ft< mil ?Hd dHLdl *M 6


dldl eilSlfelS 6ft<d *i3ld eilSlfelS fl[Ul ($) (l) Kl fllHl-H tfel eil&felS after 6LH dl UlRl i 6

*lfel adjA SlWlfeli ftfl.'V    d.

(0 lOid *llAeU HlcH \Hd fl3Ld $U %U HlcH 6 fl[Ull Hl d.

(*l) a ?Hd /, =H ?H[Ul C-t / dl faK-tdlM. fl[Ul MHL 6LH dl 6

f - da ax dt

v y


d2 a


t// /l,il ~r\,.:\ . *\ *\ .-.n -..r>. . >-.*\ 1 6?/

'V/TJ ?Hd d HVfl lOid /j,

(h) Mi    ?H &d l(xtHld UH &  <M ddL VIK fl[Ul

r = cosU)t i + sinU)t j (wi. CO    9.) fclfcll "b

(*l) [H|-LdL =H r d ci<H {9.

(\) a|c r

(h) % f = x3 + y3 +3xyz 6LH dl grad f -ft &Hd mil d*U grad / UfWMlk-t B Mil it dl $l.

H*l<U

(*l) fl[Ul IM| Mh /dl    ( curl)    ?HLl lOid

cwr/ |(|)v j = (grad <()) x v + <() curl v .

(H) % f = xy2l+2x2yj-3yz2k 6LH dl (l,-1, l)    divf

curlf HL.

= a;

dtz


U) %. r = a cost i + asintj+ at tanak dl &Hd mil.

ENGLISH VERSION

-* 9_> 3_>

dr d r d r dt dt2 dt3


Instructions : (1) As per the instructions No. 1 of the page No. 1

(2)    Figures to the right indicate marks.

(3)    Follow usual notations.

1 (a) Answer the following :    5

(i)    State De' Moivre's theorem.

(ii)    Write expansion of tana in terms of a.

(iii)    Write the principal value of Logx.

(iv)    State the condition that non-homogeneous system of equations has no solution.

<v> /4{P]}=............

(b) Answer the following with calculation.    10

2-14 6 -3 12


(i) If A =

then find (A).

(ii)    If characteristic roots of a matrix A are -2, -2 and

4 then find characteristic equation of A.

(iii)    Eliminate 0 from x = cosh20 + sinh20 and y = 2sinh0cosh0.

(iv)    Prove that sin2x + zsinh2j = 2sin(x + zj).cos(x-zj).

(v)    Wether vector a = (x + 3y)i + (y-3z)j+ (x-2z)k is sole noidal.

(a)    Obtain the expansion of cos0 and sin0 in    6 terms of cos 0 and sin 0 (where neN)

(b)    Prove that tan-1 (cosh 0 - sinh 0) = J/ sin-1 (sec/z0).    6

0 + 2 sin0-sin30 25

(c)    Prove that lim a , . : 7T = -T7.    6 w e->0 0 +tan 0-tan 20 14

OR

2    (a) (b)

(c)

3    (a) (b)

(c)

3    (a) (b)

(c)

4    (a) (b)

(c)


6

6

6

6

6


3 + i


-1


Prove that an


6


6


Prove that every square matrix A can be expressed uniquely as P + i Q where P and Q are hermitian matrices.

If A = ctjj J where ajj = > x./ then show that matrix A 6

2 2

is symmetric and if o,j =i - j then show that A is skew symmetric.

When two linear systems AxX = and A2 X = B2 of equations in -unknowns are called equivalent. Show that following system are equivalent.


Obtain the expansion of cos a in terms of a (where a is in radian).

Prove that

(2 cosh 0 -1) (2 cosh 20 -1) (2 cosh 40 -1) (2 cosh 0 +1) = 2 cosh 80 + 1


having roots sin2a and cosh2(3 is

. , , 1/ (cosh 2y- cos 2x)

Prove that, log sin(x +iy) = y0 log-

' z 2

+i tan-1 (cot x tanh y)


State and prove Euler's theoem and hence express express cos0 and sin0 in terms of exponential function.

If a + i (3 = sin-1 (u + iv) then prove that the equation


If xr = cosjrj + i sinjrj, r = l,2,3..... then prove that 6

Xj .X2 .X3........ up to infinity = cos n .


Find the value of Log(a + i$) , a, (3ei?.

eiQ

Separate 1-k |> into its real and imaginary parts.


2 a io x2 ~(\ + U2 +V2)x + U2 = 0


= -{(4 n +1)71 + /'log 3 j


OR


6


1/ r _ 3/ 72 /2

x 2y = 1 3y + z = 0

OR


2x + 3y + 2z = 3 3 y + z = 0 x - 2y = 1


and


4    (a)

(b)

(c)

5    (a)

(b)

(c)

5 (a) SB-0616]


6


by


6


6


6


(i)

(ii)


6


6


Solve the following homogeneous system of linear equations :

x + y 3z + 2w = 0 2x - y + 2z - 3w = 0 3x - 2y + z - 4w = 0 -4x + y 3z + w = 0

Justify Cayley - Hamilton theorem for a matrix

'1 3 O'

3 -2 -0 -1 1

For non-singular matrices A and B show that eigen values of A-1B and BA-1


' 3

-6

2

-1'

-2

4

1

3

A =

Express a matrix

0

0

1

1

into

1

-2

1

0

row-reduced Echelon form.

' 1

2

1

2

Find pR (A) for matrix

A =

3

2

3

2

-1

-3

0

4

0

4

1 -3

'-1

2

-3'

Find the inverse of a metrix

2

1

0

4

0

5

applying elementary row-operations.


x + y + z = 6 x + 2y + 3z = 10 x + 2y + Xz = |i

find the value of % and |ifor which the system has

(i)    No solution

(ii)    Unique solution and

(iii)    Infinitely many solutions.

7    [Contd...


are same.

Prove that there exist unique eigen value corresponding to a given eigen vector X. OR

The system of linear equation is


6


and obtain eigen vector corresponding to the smallest eigen value.

(c) (i) If eigen value of a non-singular matrix A is X 6

then show that eigen value of matrix adjA is

(ii) Prove that there exist inifinite eigen vectors corresponding to a given eigen value.

6 (a) If a and are differentiable vectors of scalar    6

variable t then find    and hence prove that

d2a dt1


da

dt


d/


ax-


= a:


'dt


(b)    A particle is moving such that its position vector r = cos cor i + smwt j (where co is constant) show that

(i)    Velocity of a particle v, is perpendicular to r.

(ii)    a\oc r .

(c)    If f = x1 + y3 +3xyz then find grad f and check wether 6 grad f is irrotational.

OR

(a) Define the 'curl' of a vector point function ~f and prove that

6

6


6


curl |())vj = (grad <])) x v + (j) curl v.

(b)    If f = xy2 i+ 2x2y j-3yz2k then find divf and curlf at point (1, -1, 1).

6


(c)    If r = a cost i + asintj + at tmak then find the value of 6

dr d r d r dt dt2 dt3

SB-0616]    8    [2500]

1







Attachment:

( 0 Votes )

Add comment


Security code
Refresh

Earning:   Approval pending.
You are here: PAPER Veer Narmad South Gujarat University 2011-1st Year B.Sc Mathematics SB-0616 - 1 ( New ) - Question Paper