How To Exam?

a knowledge trading engine...


Madurai Kamraj University (MKU) 2007 B.Sc Mathematics Real and Complex analysis - Question Paper

Thursday, 04 April 2013 04:50Web


Real and Complex analysis

OCTOBER 2007

(6 pages)

6251/M31

Paper VI REAL AND COMPLEX ANALYSIS

(For those who joined in July 2003 and after)

Time : Three hours    Maximum : 100 marks

SECTION A (8 x 5 = 40 marks)

Answer any EIGHT questions.

All questions carry equal marks.

1.    (0,1] GiwasBf)0)60 OT6ffrp rSlpaja.

Prove that (0,1] is uncountable.

2.    @0 (y3(LpinijDujiT65r QLDilifl Q&JciflaDiLi ajsoijiup.

Q6U6lfllL)li) (tp(J0DLDUjrT65TGgj OT65Tp rlp6ffi.

Define a complete metric space. Prove that discrete space is complete.

3.    f : [0, l] - R / (re) = x2 crstTp Gucwijujpffiffiu-

Ulll*|-0LJlijl65T #IJ[T65I Qm_irff#lLL|S5)l_UJ ffmTL| OT6ffrp

Prove that : [0, l]-R defined by fix) = 2e2 is uniformly continuous.

4.    @ss)L_iLirT65T loul GgrbjDjSao er(Lp<l

State and prove intermediate value theorem.

5.    $0 c5))L_ITUJn-6ST QlDlllflffi Q6U6rfl)lLI ajQDIJUjp.

6ULp<5LDIT6ffr (olLDL_fl@L_6ST ah.Uf.UJ R l_ITUJIT65rg] 0)60 OT6imp Ilp64.

Define a compact metric space. Prove that R with usual metric is not compact.

6.    60 i_iia;ilujrrT GlLDL_ifl Qaj6rfluS)6T Gldsu ajcnijiuanjD Qa:tLjuJuuilii|.0<50Lb 60 Qrri_iTff#lujrr6BT ffrriTLj ijrTor

Qrri_iTffi#liL|0!)L_ujrTUJ    croup jflp&jffi.

Prove that a continuous function defined on a compact metric space is uniformly continuous.

7.    Zx iBjDpii) Z2 OT65TU65T rGjSfpLD    ffisouGluRfr6iT

Z i . .

= -=r- CT6SrpLD %2


OT6afta) Z1xZ2=Z1xZ2 sretrpLb

Jlp6L|<E.

If Zx and Z2 are any two complex numbers, prove

8. f(z) = ze z CTeiiTn) ffrrrn51(i)0 C-R 5LD65Turr(5iffloaT

ffrflurriT<K<5.

Verify C-R equations for the function

/ =

2e~z


9. -1, 0,1 GupsDjD (jpaDoiGuj -1, - i, 1 gisurjiiffilOTT Gldso

LDrrppih QffujiL|Lb 10 GiTGaml    ffirr6wr<$..

Find the bilinear transformation that maps -1, 0,1 onto -1, - i, 1 respectively.

10.    C OT65rui 1-sb Q<5(Ti_r&j<l l-d> (ipii).iL|Lb | z | = 1 OT6imD

|0DIJ6mll_Lb OTdiflQ) j] Z | Z dz 65T LDluflDU ffirTOTTS.

c

Evaluate j] z | z dz where C is the semicircle

c

| z | = 1 starting at 1 and ending at 1.

11.    UJ(T)<K65Bfl )l|.UU6S)L_ GjbfD65) CT(lgl rlp6L|ffi.

State and prove fundamental theorem of algebra.

12. --;-Tuf61 IjDULjU L|6TTeifl<Se5)en' 6WTI_j5ll5gl

(2 sin z -1)2

ajanuu@iffi.

Determine and classify the singular points of

1

Answer any SIX questions.

All questions carry equal marks.

13. R" = {(a, x2, , xn): x;e R for 1 <i < n} er&na. p > 1 mriipLb x, y e R\ d-m 6Li0oijuj0D(D

nVp

crssflo) d, Rn-U 90 QlJDlllflffi

d (x, y) =


Zl ** -yi\


t=i

tnTfaoinni jfs)p6L|5>.

Let R" = {(acj, x2, , jc) : x;e R for 1 < i < n\. Let p > 1 and x, y e R". If d is defined as

Vp


n

Zl -yt\


d (*, y) = Rn.


, prove that d is a metric in


i=1


14.    Quiuifl65T C<SL_L_ffiifl GrDjDao <r(Lpl rglp&a.

State and prove Baires category theorem.

15.    6nija>Q&jrr0 il|Dj5gj lani_Qaj6ifliL|m R-ffi@

ewiDLjQurTrTUj l0ffi@Lb OT6rp jlp64<$.

Prove that any open interval is homeomorphic to

R.

6251/M31

rp t m

16.    R 60 a_6rrQajsifl Qrn_iTL|6iTisrrmjj I0lju(d@

G5)eillUIT65I)lh GutTlLDrT65TglLDIT6BT rS)uijj<5CT)6ffT    0 0Di_Qojcifl CT6ifruC CTwp rSlpGna;.

Prove that a subspace of R is connected if and bnly if it is an interval.

17.    Qs)Qsfl Gurrija) GajDrDo) ot(I$ rpes.

State and prove Heine-Borel theorem.

18.    Z-y LDfDjpm Z2, ZZ + aZ + aZ + /3 = 0 otostid qjL-i_>D3)u Qurrpgj &,<S6)&),\g L|6TT6rflffi6rrrr l0uurf)@ GjCS)6UUJrT65Tg|Lb    Gun-gJLDIT6ST)LD(T65T    r1u0O65T

ZjZ2 +ccZl+aZ2+P = 0 otottuG siwp rilpas.

Prove that Z1 and Z2 are inverse points with respect to a circle ZZ + aZ + oZ + j3 = 0 if and only if ZjZ2 + orZ+cifZ2 + )S = 0.

19.    u = 3xly + 2x2 - yz - 2y2 ctottjt) <?rriTL| fi0 l65)<Fff

fflT(TL| OT0JTp rlp6ffi.    U_irrG6pQl>IT0 )6S)& e5)655TuSl0D6STlLJLb <$rr65ffr<K.

Prove that the function u = 3x2y + 2x2 - y3 -2y2 is harmonic. Also find a Hormonic conjugate.

20.    Quauj    co@ sulLl-qst Gii>a) UMTjbjDib QffUJiLjih @0 GjsiTGaml LDrrfDjDe?) anmra.

Find the bilinear transformation that maps the real axis onto the unit circle.

5    6251/M31

21.    Ol_UJ60lfl65T G<(f)(D0D|$ OT(Lp;l (SlpGlJ. State and prove Taylors theorem.

7 dx

22.    LD<luiSl(hlffi : -

o>!+a2f

Evaluate : ~jj    .

0 \X + a j

6







Attachment:

( 0 Votes )

Add comment


Security code
Refresh

Earning:   Approval pending.
You are here: PAPER Madurai Kamraj University (MKU) 2007 B.Sc Mathematics Real and Complex analysis - Question Paper