How To Exam?

a knowledge trading engine...


Pre University Board 2008 P.U.C Physics, Chemistry, Maths

Monday, 04 February 2013 08:10Web


Karnataka second MATHEMATICS June 2008 Kan & ENG version is in Pdf Format Check tat beneath.

Total No. of Questions : 40 ]    [ Total No. of Printed Pages : 16

Code No. 35

June, 2008

MATHEMATICS

( Kannada and English Versions )

Time : 3 Hours 15 Minutes ]    [ Max. Marks : 100

( Kannada Version )

: i) Xi A, B, C, D E 0>O

0>    t o%.

CO    *    c    _D

ii)    - a n 10 oxn>o, - b n 20 oxnsb, -

c n 40 oxn>o,    - d n 20 oxn>o

7 _0

>mrt - e n 10 oxn-t

_0

- A

X>A 0>    t 0 :    10 x 1 = 10

CO    _D y oi    oi    _0

   XoiSiO.


2.


4321 4322 4323 4324


4.    A oo B    ,a>ae(o    i + j + 2k    3 i - 3 j + 2k

_o    cp    J    _    J

wnart, P (oo AB o o.oos>Ado P ,a aeo ,QeSo Xodo&SoO.

7    ~ 6    co    cp    t

5.    y-&X\X@ ,5FdoS oOo ( a, 0 ) SXeodS oadoS    ,oeXdraSo XooSoO.

6.    ( x + 1 ) 2 = - 4 ( y - 3 ) - a<o deZrt    XooSoO.

7. cos - 1 ( sin 330 ) o dd 0o ?

8. 1, ro, ro 2 rt >o XX ort>aAQd, ( 1 + ro - ro 2 ) dd 0oj ?

9. y = e + x woart, djy Xodo&SoO.

10. | e x 1 1 + tan x + dx dd <oo. XooSoO. cos x +    *

- B

x>nS)n>    o :    10 x 2 = 20

11. 352 oo 891 - o.,a.B>. ( G.C.D. ) So XooSoO.

_0    c

Xe daX.X o<n> o XooSoO.

1 4

3 2


12.


<A

13. odo ort>o oadoS ,oXo<S OSraeos>Adorf 0oo srap&.

AAA    AAA

14.    i + 3j + 2k , 2 i - j + 3k doJo i + j + k    ,d/3oJd Jo$or& doonn> $>>do odo dod<o oJ,rt>,d oort>3A d, -

   *    y    co    6    &    co

dod&SoO.

*    ct

15.    oo d - do ( 3, 2 ) do Jo a<oJ deZ x = 1    - ,Poeddrado dodoSoO.

2 tan - 1 *\J 1 + XX = V1 - x 2 0oo

16. sin


17. do> odoP do>d >doeribd do Jo y = x ,d>deZo doed deodo

art& x 2 + y 2 - 4x - 6y + 10 = 0 d* Jdo odA $eQ,od d*Jo

, Poedd rad o dodoSoO.

ct

18. ( 1 - i ) 9 = 16 - 16i 0oo

19. y = log I 1-COS X )    d = 2 cosec x 0oo

a te e V 1 + cos x !     dx

20.    y 2 = x dd,deZrt 0> ,dd x-d\d@ 45 od dedo&od/Sdd,

dd;deZo doe ododrfo, dodoSoO.

1

21.    J x ( 1 - x ) 7 dx d <oo dodoSoO.

0

22. ( y - 2) 2 =4a( x+1) ,Poeddrad    Pdedort,

, Poedd rad o dodoSoO.

- C

23. a) 756 -    ddX &Xrt> ,oZ6>0r dod B)rt> ddd0

XodoSO.    3

b) a/bc ddo ( a, b ) = 1    a/c 0odo srap&.

2


24.    3x + y + 2z = 3

2x - 3y - z = - 3

x + 2y + z = 4

,oeXdrart> d0adrt>0 XeS dd ood XodoSoO.

5


ct    cp

25.    dProX rtra z doe <00rt> dOSO * d a * b = a + b + 3, V a, b e z

0odo d>,z>,add, do odo doddraeo ,oXo< 0odo    5

6 6

26.    a) a = i - 2j - 3k , b = 2 i + j - k dbd c = i + 3j

- 2k wAd d, cT n ,d/oddd)Add dd ,dddS bT

CO    -D    Cn

dodo c dxS aXd/ ,QSdd, XodoSoO.    3

_0    ct

AAA    AAA

b) 2 i + j + k dodo i - 2j + 3k d 0ddo ,d/3Odd ddr&d XrarrtAd d, ,dz3Odd ddr&d erardd,

*    CO 7        _0    ct

XodoSoO.    2

ii. x> nd)n> /d)ddd 0-0 dSnn do :

2 x 5 = 10


27. a) x 2 + y 2 + 2gx + 2/y + c = 0 ddX ( x 1 , y 1 ) ddodood

,,SrXd d dd, XodoSoO.

3


<*J j <*J    CO    c

b) 3x - 4y + 6 = 0 , d> deZrt oodAdd dd

x

, aoeXdrart >d, XodoSO.

ct

28. a) 9x 2 + 5y 2 - 36x + 10y - 4 = 0 SerSd 3$ od adod deZrt> eddrartrfo dod&SoO.    3

ot

14    4

b) 3$o = -3- dodo_o e = 3 doS dSdo ( Hyperbola x 2 y 2

)    2 - 7-0 = 1 ,oeddraSo dod&SoO.    2

a 2 b 2    01

n

29. a) tan - 1 x + tan - 1 y + tan - 1 z = 3rt ,

xy + yz + zx = 1 0O ,3.    3

2 5 b) sin 2 0 - cos 20 = 4 , oedd ra ,3/ OdSo dodoSdoO.

2

III. d>A d/S)3d .odo ,4,nn JoO :    3x5=15

30. a) x ot doOJo ax aSo do drto dodoSdoO.    3

b) y = tan - 1 ( 4 4X 2 ] W3rt , djy = 4 + 2 0oo ,3. 2

2 2

31. a.) y = ( sin - 1 x ) + ( cos - 1 x ) W3rt ,

( 1 - x 2 ) y 2 - xy 1 - 4 = 0 0O ,3.    3

b) x = 3 sin 20 + 2 sin 30 dodo

y = 2 cos 30 - 3 cos 20 W3rt ,

dy = - tan 0 0oo ,3an.    2

dx    2

X

32. a) y = ea X,deZ<D odeZ<DD a< deZ<D drtrX@ >eDOTAD dJ ,>FdeZ<DD oD A d ,oZ. wAdD

co    o    <*J    cp    >    _o

0OD A.    3

n/2

1 f


b) | S|n X . C (S X dx dD. XoDSDO.    2

11 + sin 4 x    01

0

1 2


2 _ 3 tan x

33. a) | -j-~-t- dx d D. XoDSDO.    3

11 + 2 tan x    *

1


b)


( 1 + e x ) ( 1 _ e x )


dx d <D, XoDSDO.    2


34. aers 9x 2 + 16y 2 = 144 d A/rar oX< >ao XoDSDO.    5

2 x 10 = 20

35. a) oD oDro>A dD ot6Z6 XS dDo d    ,DeXdraD

x 2 y 2

o _ 7-9 = 1 d oD ad&A.    6

a 2 b 2

1

a

a

b)

2

a

1

a

a

2

a

1

2

i) cos 2a + cos 2p + cos 2y = 0

sin 2a + sin 2p + sin 2y = 0

ii) cos 2 a + cos 2 p + cos 2 y = 2

sin 2 a + sin 2 p + sin 2 y = 33 0oo

6


c c c c c c    c c c 2

b) [ a x b b x c c x a ] = [ a b c ] 0O    4

37. a) aoo rte> doed,. erar    8 .,o.oe. /,.o o,a w rte>

-e    _o

500 n

nad 3 d-,o.oe.    rte> doo nad Sodod

drt>o dodoSoO.    6

ot

b) sin 0 + sin 20 + sin 30 = 0 , oedd ,ad/, dOsaddo dodoSoO. 4

6    ot

n/2

38. a) J 1 , sin x cos x dx = 0o    6

2

cos 2 x    n


+ sin x cos x    33

0

b) X> dd< , oedd ,ad/w dOsaddo dodoSoO :

dy 1 + y 2    2

xy dX = 17X2 1 1 + x + x 2 >     4

- E

X>A    tp :    1x10=10

39. a) cT + I) + ~c = 0 dit | cT | =3, | ~b | = 5 dit | ~c | = 7

, a dot b do Xedi XodiSiO.    4

7    _D    c

b) V3 - i ,o3erar ,oZ6i    XodiSdi d)rt>ct nrora*

td rtidi.    4

y co

c) 2 202 ,oZ,2i 11 Ood    $iod Xad deddi

6    ct            ct

XodiSiO.    2

40. a) odi oXe Xerad Xrar dit odo    dt d ,oZ,</Ad.

y    -o    -o cp    6

n

Xerad erar rtOdroneydd 0ddo roirt> do Xe 0odi

3

teO.    4

b) J cot 4 ( 3x ) dx d(i XodiSiO.    4

c) y = log 5 VT - x 2 x n , oopd ot d X.    2

( English Version )

Instructions : i) The question paper has five Parts - A, B, C, D and E. Answer all the parts.

ii) Part - A carries 10 marks, Part - B carries 20 marks, Part - C carries 40 marks, Part - D carries 20 marks and Part - E carries 10 marks.

PART - A

Answer all the ten questions.    10 x 1 = 10

1. Find the number of incongruent solutions of 9x = 21 ( mod 30 ).

4321 4322

2. Evaluate

4323 4324

3.    In a group ( Z 6 , + mod 6 ) , find 2 + 6 4 1 + 6 3 1 .

4.    Find the position vector of the point P which is the mid-point AB where

AAA    AAA

the position vectors of A and B are i + j + 2k and 3 i - 3j + 2k .

5. Find the equation to a circle whose centre is ( a, 0 ) and touching the y-

axis.

6. Find the equation to directrix of ( x + 1 ) 2 = - 4 ( y - 3 ).

8. If 1, ro, ro 2 are the cube roots of unity, find the value of ( 1 + ro - ro 2 )

9. If y = e + x , find d- .

I


10. Evaluate | ex 1 1 + tan x j dx.

cos x

PART - B

Answer any ten questions.

10 x 2 = 20


11. Find the G.C.D. of 352 and 891.

1 4

3 2


12. Find the characteristic roots of the matrix

13. Prove that a group of order three is Abelian.

14. Find the volume of the parallelopiped whose co-terminus edges are the

A    A    A    A    A    A

AAA


vectors i + 3j + 2k , 2 i - j + 3k and i + j + k .

15. Find the equation to the parabola whose focus is ( 3, 2 ) and its directrix

is x = 1.

16. Prove that

- x

17.    Find the equation of a circle passing through the origin, having its centre

on the line y = x and cutting orthogonally the circle x 2 + y 2 _ 4x _ 6y + 10 = 0.

18.    Prove that ( 1 _ i ) 9 = 16 _ 16i.

19.    If y = log ( 1-cos x + , then prove that = 2 cosec x.

a    e ( 1 + cos x !        dx

20.    Find the point on the curve y 2 = x the tangent at which makes an angle

of 45 with the x-axis.

1

21.    Evaluate J x ( 1 _ x ) 7 dx.

0

22.    Form the differential equation by eliminating the arbitrary constant ( y _ 2 ) 2 = 4a ( x + 1 ).

PART - C

I. Answer any three questions :    3 x 5 = 15

23. a) Find the number of positive divisors and sum of all such positive divisors of 756.    3

b) If a/ bc and ( a, b ) = 1, then prove that a/c.    2

24.    Solve by matrix method :

3x + y + 2z = 3 2x - 3y - z = - 3

x + 2y + z = 4.    5

25.    Prove that the set z of integers is an Abelian group under binary operation * defined by a * b = a + b + 3, V a, b E z.    5

26.    a) If a = i - 2j - 3k , b = 2 i + j - k and c = i +

A    A    __

3j - 2k , find a unit vector perpendicular to a and in the same plane on b and c .    3

b) Find the area of a parallelogram whose diagonals are the vectors

AAA    AAA

2 i + j + k and i - 2j + 3k .    2

II. Answer any two questions :    2 x 5 = 10

27.    a.) Find the length of the tangent from the point ( x 1 , y 1 ) to the

circle x 2 + y 2 + 2gx + 2fy + c = 0.    3

b) Find the equations of tangent to the circle

x 2 + y 2 - 2x - 4y - 4 = 0, which are perpendicular to

9x 2 + 5y 2 - 36x + 10y - 4 = 0.

b) Find the equation to the hyperbola in the standard form

3


2 2 x 2 y 2

14


Or - b""2 = 1> given that length of latus rectum = -3- and

4

2


e = 3 .

29. a) If tan - 1 x + tan - 1 y + tan - 1 z = 2 > prove that

xy + yz + zx = 1.

3

2


b) Find the general solution of sin 2 0 - cos 20 = 4

III. Answer any three of the following questions :

3 x 5 = 15


3


- 1 1 4x , dy 4 1 1 -2 + > prove that dT = -


2


dx 4 + x :


4 - x


30. a) Differentiate ax w.r.t. x by first principles. b) If y = tan


31. a) If y = ( sin 1 x ) + ( cos 1 x ) , prove that

( 1 - x 2 ) y 2 - xy 1 - 4 = 0.

3


b) If x = 3 sin 20 + 2 sin 30, and

y = 2 cos 30 - 3 cos 20

dy

prove that dx =


. 0 - tan 2


2


a

square of the ordinate and subtangent is constant.    3

n/2

1 f


, , ,    . sin x . cos x

b) Evaluate I -4- dx.    2

+ sin 4 x

0

33. a) Evaluate | 23 tanx x.    3

+ 2 tan x

dx.    2

1


b) Evaluate


( 1 + e x ) ( 1 - e x )

34. Find the area of the ellipse 9x 2 + 16y 2 = 144 by integration. 5

PART - D

Answer any two of the following questions :    2 x 10 = 20

35. a) Define hyperbola as a locus and derive the standard equation of the

hyperbola in

the form

x 2

a 2 -

y- = 1

b 2 = 1

6

1

a

a 2

b) Prove that

a 2

1

a

3 ! 2 = ( a 3 - 1 ) .

4

a

a

2 1

36. a) If cos a + cos p + cos y = 0 = sin a + sin p + sin y , prove that

i) cos 2a + cos 2p + cos 2y = 0

sin 2a + sin 2p + sin 2y = 0

ii) cos 2 a + cos 2 p + cos 2 y = 2

2 2 2 3 sin 2 a + sin 2 p + sin 2 y = 2 .    6

b) Prove that [ a x b b x c c x a ] = [ a b c ] .    4

37. a.) The surface area of a sphere is increasing at the rate of 8 sq.cm/sec.

Find the rate at which the radius and the volume of the sphere are

500 n

increasing when the volume of the sphere is 3 c.c.    6

b) Find the general solution of sin 0 + sin 20 + sin 30 = 0.    4

n/2

1 2

1 cos x    n

38. a) Prove that I -j-:--dx = = . 6

J 1 + sin x cos x    3yf3

0

b) Find the general solution of the differential equation

PART - E

Answer any one of the following questions :    1 x 10 = 10

39.    a) If a + b + c = 0 and | a | = 3, | b | = 5 and | c | = 7,

find the angle between a and b .    4

b)    Find the cube roots of a complex number V3 - i and represent them in argand diagram.    4

c)    Find the remainder when 2 202 is divided by 11 ( least positive remainder ).    2

40.    a) The sum of the lengths of a hypotenuse and another side of a right

angled triangle is given. Show that the area of the    triangle is

n

maximum when the angle between these sides is 3 .    4

b)    Evaluate | cot 4 ( 3x ) dx.    4

c)    Differentiate w.r.t. x :

y = log 5 V1 - x 2 .    2

1

9x = 21 ( mod 30 ) ,oeXdraX@ d,d    0>drt$ ?







Attachment:

( 0 Votes )

Add comment


Security code
Refresh

Earning:   Approval pending.
You are here: PAPER Pre University Board 2008 P.U.C Physics, Chemistry, Maths