How To Exam?

a knowledge trading engine...


Pre University Board 2009 P.U.C Physics, Chemistry, Maths

Monday, 04 February 2013 02:40Web



Total No. of Questions : 40 ]    [ Total No. of Printed Pages : 16

Code No. 35

June/July, 2009

MATHEMATICS

( Kannada and English Versions )

Time : 3 Hours 15 Minutes ]    [ Max. Marks : 100

( Kannada Version )

: i) d, dXdo A, B, C, D doJ E 00 aco@ dartrtd. 0a >dartrt>o J 0ft.

CO    *    c    _D

ii)    - A n 10 odrt>3,    - B n 20 odrt>3,    -c n 40 odrt>o, dan - d n 20 oxn>o doJo

7        _D

- e n 10 oxndoJ d.

   _D

- A

X>A 0a    J 0ft :

10 x 1 = 10


CO    _0 y oi    oi    _0

1.    3x = 2 ( mod 6 ) ,doe&edoJn d0ad<Y. ?

12

2.    a do d,dX," X,    ( Direction cosines ) 75- ,75- doJo n rt>add n

33

d doo XodoSoO.

3. dP}aroXn> rtra I (do, * 3/dodo aZ a * b = a b , V a, b e I wAd. 3/dodoo qjdzrf 3/dodoe da I doe<,de 0odo doeft.

4.    A, B ode dOd/ra ( Order ) dod 0dd drtr d/;drt>b. | A | = 4, | B | = 5 add, | AB |    dodSoO.

5.    0ddo d rt> deod,rt> dodra dad d aAd, r , , r 2 n> &&.rt>3Ad d, a

a) o    ,J/    co 12    y 6    co

drtb odapd d)6 ,Fd3rtde5ad ( External touch ) aod(o0 ( Condition ) d(oO.

6.    4x 2 + 9y 2 = 36 d doeSdod (/dde od    dadrt> dado dodoaDO.

7.    sin - 1 ( sin 130 ) ( d (oy dodoSoO.

ot

( 1 - i + n

8.    I i + i I = 1 artodo n dad d dP}Fod d (oo dodtfoO.

9.    4) f ( x ) = | x | ahdd, L f1 ( 0 ) dodoaoO.

n/4

10.    J ( sin 3 x + cos x ) dx d (o0 dodoaoO.

- n/4

- B

d> Ad)rt> (/d)ddda dnO o :    10 x 2 = 20

11.    ca = cb ( mod m ) aAd c, m rt >i ,aded,    ,oZ,rt>add a = b ( mod m

K    co    <66

) 0od srap&.

cos 0 sin 0

12. A =


sin 0 cos 0


adn , AA 1 (o ,    ( Symmetric ) d/ddbe


0od does.


3    Code No. 35

13. d,odD<dD    ,od< d/dde 5# ( + 5 ) dbD { 1, 2, 3, 4 }

rtrad) d,odD<de 0od dOeft.

14. Q + ( >rt ,o<Zrt> rtra) rtrad * 00 3/xb<D dZ a * b =

a b

3 , V a, b e Q + wAd. >o dDDo Q + a - 1 D dodDaDO.

A    A

15.    X i + j + 2k , 2 i - 3j + 4k dD i + 2j - k rt >0 , dD< , rt Add ( Coplanar vectors ), X d d<DD dodDaDO.

16.    ( 0, 0 ), ( 3, 0 ) do ( 0, 4 ) rt >d ort rt >3Acbd $D&d dOdd ,DeddradD dodDaDO.

17.    : tan - 1 x = sin - 1 -r - cot - 1 1 .

V2    3

i tan - 1 3

18.    5e    3 0o ,oZ,w<D d,d ( Real ) dD 6 ( Imaginary ) rtrt>D djdDdA 3, 4 0o 3eOft.

V' -    +    / i~

/ i- \


x - 1    - 1 Vx + 1

dy


19. y = sin - 1 - + sec - 1 - wd d, d~ = 0 0o

\yjx + 1 /    \y/x - 1 /    dx

20.    x m y n = am + n 0o dd,deZD </d)d &orio> 0> drdd) odD $D&dA ( Abscissa ) ddrtorf 0odD ,a&.

21.    J [ sin ( log x ) + cos ( log x ) ] dx dDD dodDaDO.

22.    y-d\d Dr dD<aodb>< ( Origin ) ,&F,od drt> dd< , Deddrad Dr ( Differential equation ) ddDO.

- C

I. X>Ad)rt>0,    Ob :    3 x 5 = 15

23.    a) a, b d>})FoXrt> do.,).. ( GCD ) do    275 doo 726 d

do.,).B>. XodoSoO.    3

b) 252 O    ,oZ,rt> rtora    ddo - )&Xrt>do,

Ct    * 6    6    cp ci    44    0

0oo XodoSoO.    2

24.    Xe d iao Sb : 2x - y = 10

cp    4

x - 2y = 2

dod ,io Xrt> Xed) yS-oq deodo ( Satisfies ) 0oo dOeSjb.    5

25.    V a, b e H, ab - 1 e H wirt, G , oXo< 6d<, drtradid H rtd G d,oXododo ,iab. b, d<>eAb H do3o K n> G

4    c    _D

d , oXo<nd d H I K Xrai G d,oXododo ,ib.    5

   AAA        A    A    A    

26.    a) a = 2i + j + k , b = i + 2j* - k 0O Xljrt a n

od)Adod do3o a    , b    n> ,do3<0 dod

0    CO

( coplanar with a and b ) &X    ( Unit vector ) do

XodoSoO.    3

b) a + b + c = 0 wd,

a x b = b x c = c x a 0oo ,)b.    2

II.     X> Ad)rt>S d/>d)ddd 0do drtrt Ob :    2 x 5 = 10

27.    a) x 2 + y 2 + 2 g 1 x + 2 f 1 y + c 1 = 0 doo

x 2 + y 2 + 2 g 2 x + 2 f 2 y + c 2 = 0 drt >0 oddA $eQ,d aoddDD ad)&b.    3

b) dDdD d)1(rt> dDOT Xeodd ( 1, 2 ) wAd. odD dd ,DeXdrad) x 2 + y 2 - 2x + 3y = 0 WAdd, Xeod,d) drt> >n ddd ddrt ddoe 0odo dOeSjb.    2

28.    a) 9x 2 + 4y 2 - 18x + 16y - 11 = 0 (do Xeod, dDD dd ,SddDX

( Auxiliary ) dd brdd XodDSdDO.    3

b) d d d <dD x = 2t 2 , y = 4t dD adDd ( Directrix ) ,oeddrad0 XodDSdDO.    2

n

29.    a) sin - 1 x + sin - 1 y + sin - 1 z = Wddrt

x 2 + y 2 + z 2 + 2xyz = 1 0od srab.    3

b) tan 20 tan 0 = 1 ,aoeXdrad ,d/6 dO>ddD XodDSdDO.    2

III.     X>A dradddd dodo drtrt Ob :    3x5=15

30.    a) dDKQod x rt ,oobdo sin 2x Dr adjab ( Differentiate ). 3

b) x n ,oobdo adjab : (sin x )logx    2

31.    a) cos - 1 ( 4x 3 - 3x ) d D cos - 1 ( 1 - 2x 2 ) rt ,oobdoJ

adb.    3

b) d X,deZrt >dd y = 6 + x - x 2 doo y(x-1) = x+ 2 rt>D (2,4)

odoa S    d 0odD 3eOb.    2

CO vJ    0

( 1 - x 2 ) y 2 - xy 1 + m 2 y = 0 0O    3

32. a) y = sin ( m cos - 1 x ) wd,


-1- dx dtioo dooaoO.    2

b)


x ( x 5 + 1 )

33. a) x n ,000J d<0& ( Integrate ) sin x + 18 cos x

3


3 sin x + 4 cos x

b) J \/ -x dx d tioo dooaoO.    2

34. d< ( Integration ) >ao x 2 + y 2 = 6 4)J eraro dOOaOO.    5

- D

d>A    JO :    2 X 10 = 20

x 2 y 2

35. a) y = mx + c ,d>deZtioo 2 - 7-9 = 1 3dtiod,

a 2    b 2    *

,FdOTrto 0tioO    ( Derive ). <y ,fooo

dooaoO. aotioO    tieA x - y + 5 = 0 deZrt

x 2    y 2

,/oJdrortooJ 16    - 12" = 1 dr@ ,Fdrt> ,oeddrart>o

dooaoO.    6

1 a a 2 + bc

b) 1 b b 2 + ca = 2 ( a - b ) ( b - c ) ( c - a ) 0o ,)$&. 4

1 c c 2 + ab

36.    a) Q deo d,doe(Ddo don. Jd) , Uora dProXrtAdodrt

d,doe(Ddo ,an. do defin

Z 10 - 1

Z = cos 0 + i sin 0 Wdrt ZT0-1 = i tan 50 0odo srapn.    6

Z + 1

b) cos 20 = V2 ( cos 0 - sin 0 ) ,oeXdrad Jd/S dO3ddO XodoQoO.    4

37.    a) odo ne>d d<d) ddd dd 4n c.c./sec. aAd. d<d) 288 n

adrt 3, doed &njex>Frt> ddod ddrt>o XodoQoO. dod

(i) 5 ,Xodort > ddd and d.3D., doJo (ii) dd 288 n adri

v '    co *    co    66    _Dv'*i

, oopndoJ dd<d) ddod ddrt>o XodoQoo.    6

b) ( 1, 5 ) dJo ( 1, 1 ) aodOrt>o    <on>Adod ddd<(od

,oeXdrart>o XodoQoO.    4

ot

I a


x dx_ = n 2

cos 2 x + b 2 sin 2 x 2ab


38 a) I - . 2 2 u 2 2 -- =    0od nin).    6

0

b) xy ( 1 + x 2 ) djx- - y 2= 1 d dXo ,oeXdrad aarj ( Particular ) d 0>ddo XodoSoO : x = 1, y = 0 0od X.d.    4

- E

X>A (/d)ddd o d, Jon :    1x10=10

39. a) | a + b + c | = | a + b - c | add, a + b doJo c rt>

dodra Xe d o XodoQoO.    4

ot

b) odo aar >Jdo drardod 0a, <oXe drt>, doadao xdd ft/rard) rtOddaAdoJd 0odo ,aaft.    4

1

c) ' 16 cis 2 ) 4 XodoadoO.    2

40. a) 2 150 x 3 12 x 135 = a ( mod 7 ) wdd, a dorfo, 7 0od da>A,odart ftrtod dad d do dodoadoo.    4

*    ot

2 2

b) 2 ( x 2 + y 2 ) - 12x - 4y + 10 = 0 do Jo

x 2 + y 2 + 5x - 13y + 16 = 0 dJrt ,ad/, {d d do

dodoaoo.    4

2

\fx

v    dx d doo, dodoadoO.    2

c)


V2 - x + yfx

ii) Part - A carries 10 marks, Part - B carries 20 marks, Part - C carries 40 marks, Part - D carries 20 marks and Part - E carries 10 marks.

PART - A

Answer all the ten questions :    10 x 1 = 10

1.    3x = 2 ( mod 6 ) has no solution. Why ?

2.    If direction cosines of a are 3 , and n, find n.

3.    On I ( the set of all integers ), and operation * is defined by a * b = a b ,

V a, b G I. Examine whether * is binary or not on I.

4.    A and B are square matrices of the same order and | A | = 4, | B | = 5. Find | AB |.

5.    Given two circles with radii r 1 , r 2 and having d as the distance between their centres, write the condition for them to touch each other externally.

6.    Find the sum of the focal distances of any point on 4x 2 + 9y 2 = 36.

7.    Evaluate sin - 1 ( sin 130 ) .

8.    Find the least positive integer n for which '

9.    Given the function f ( x ) = | x |, find L f 1 ( 0 ) .

n/4

10.    Evaluate J ( sin 3 x + cos x ) dx .

- n/4

PART - B

Answer any ten questions :    10 x 2 = 20

11. If ca = cb ( mod m ) and c, m are relatively prime then prove that a = b ( mod m )

, verify that AA 1 is symmetric.

cos 0 sin 0 sin 0 cos 0


12. For the matrix A =


13. Define a semigroup. Examine whether { 1, 2, 3, 4 } is a semigroup under addition modulo 5 ( + 5 ) .

14. On Q + ( set of all +ve rationals ) , an operation * is defined by ab

a * b = -3- , V a, b e Q + . Find the identity element and a ~ 1 in Q + .

A    A    A    A    A    A    A    AA

15. If X i + j + 2k , 2 i - 3j + 4k and i + 2j - k are coplanar, find X.

16. Find the equation of the circumcircle of the triangle formed by ( 0, 0 ), ( 3, 0 ) & ( 0, 4 ).

17. Solve tan 1 x = sin 1 - cot 1 i- .

V2    3

t - 1 4

i tan 3

18. Show that the real and imaginary parts of 5e    are 3, 4

respectively.

19. If y = sin 1 - + sec 1 vll T , prove that    = 0.

yfx + 1 )    & yfx - 1    dx

20.    At any point on the curve x m y n = a m + n , show that the subtangent varies as the abscissa of the point.

21.    Evaluate J [ sin ( log x ) + cos ( log x ) ] dx.

22.    Form the differential equation of the family of circles touching y-axis at origin.

PART - C

I. Answer any three questions :    3 x 5 = 15

23. a) Define GCD of two integers a and b. Find the GCD of 275 and 726.    3

b) Find the number of positive divisors of 252 by writing it as the product of primes ( prime power factorisation ).    2

24.    Solve by matrix method : 2x - y = 10

x - 2y = 2

Also, verify that the coefficient matrix of this system satisfies Cayley-Hamilton theorem.    5

25.    Prove that a non-empty subset H of a group G, is a subgroup of G, if

V a, b e H, ab - 1 e H. Hence prove that, if H and K are subgroups of a group G then H I K also, is a subgroup of G.    5

   A    A    A        A    A    A

26.    a) Given a = 2i + j + k , b = i + 2j - k , find a unit

vector perpendicular to a and coplanar with a and b . 3

b) If a + b + c = 0 , prove that a x b = b x c = c x a .

2

II. Answer any two questions :    2 x 5 = 10

27.    a.) Derive the condition for the two circles

2 + y 2 + 2 g 1 x + 2 f 1 y + c 1 = 0 and

x


x 2 + y 2 + 2 g 2 x + 2 f 2 y + c 2 = 0 to cut each other orthogonally.    3

b) ( 1, 2 ) is the radical centre of three circles. One of the circles is x 2 + y 2 - 2x + 3y = 0. Examine whether the radical centre lies inside or outside all the circles.    2

9x 2 + 4y 2 - 18x + 16y - 11 = 0, find its centre and the area

of its auxiliary circle.

3


b) Obtain the equation of the directrix of the parabola x = 2t 2 ,

y = 4t.

2


29. a.) If sin - 1 x + sin - 1 y + sin - 1 z = 2 , prove that


x 2 + y 2 + z 2 + 2xyz = 1.


b) Find the general solution of tan 20 tan 0 = 1.


2


3

2


III. Answer any three of the following questions :

3 x 5 = 15


30. a.) Differentiate sin 2x w.r.t. x from first principle.

3

2


b) Differentiate ( sin x ) log x w.r.t x.

31. a) Differentiate cos 1 ( 4x 3 - 3x ) w.r.t. cos 1 ( 1 - 2x 2 ) . 3

- 1


b) Show that the curves y = 6 + x - x 2 and y ( x - 1 ) = x + 2

touch each other at ( 2, 4 ).

2


32. a) If y = sin ( m cos - 1 x ) , prove that

( 1 - x 2 ) y 2 - xy 1 + m 2 y = 0.

3


b) Evaluate


dx.


2


x ( x 5 + 1 )


1


33. a) Integrate 1- w.r.t. x.    3

3 sin x + 4 cos x

b) Evaluate J \l 1 + x dx.    2

34. Find the area of x 2 + y 2 = 6 by integration.    5

PART - D

Answer any two of the following questions :

2 x 10 = 20


35.


a) Derive a condition for y = mx + c to be a tangent to the hyperbola

2 2 xy

0~2 - b""2" = 1. Also, find the point of contact. Using the condition

2 2 xy

derived, find the equations of tangents to yg -    = 1, which are

parallel to x - y + 5 = 0.

6


b) Prove that 1


a 2 + bc b 2 + ca c 2 + ab


a

1 b 1 c


= 2 ( a - b ) ( b - c ) ( c - a ).


4


a) State De Moivres theorem. Prove it for positive and negative integral

Z 10 - 1

= i tan 50 if


indices. Using it prove that -

Z + 1

Z = cos 0 + i sin 0.    6

b) Find the general solution of cos 20 = V2 ( cos 0 - sin 0 )

4


37. a) The volume of a sphere increases at the rate of 4n c.c./sec. Find the rates of increase of its radius and surface area when its volume is 288 n c.c. Also find (i) the change in volume in 5 secs, (ii) rate of increase of volume w.r.t. radius when the volume is 288 n c.c. 6


b) Obtain the equations of parabolas having ( 1, 5 ) and ( 1, 1 ) as ends of the latus rectum.    4


0

b) Find the particular solution of xy ( 1 + x 2 ) dx _ y 2 = 1, given


38. a.) Prove that


that, when x = 1, y = 0.


PART - E

Answer any one of the following questions :    1 x 10 = 10

39. a.) If |a + b + c | = |a + b - c | , find the angle between a + b and c .    4

b) Among all right-angled triangles of a given hypotenuse, show that the triangle which is isosceles has maximum area.    4


n

c) Find the fourth roots of 16 cis .    2


J a


2


x dx


6


2 cos 2 x + b 2 sin 2 x 2ab '

2 , dy


4


40. a) If 2 150 x 3 12 x 135 = a ( mod 7 ), find the least positive remainder when a is divided by 7.    4

b) Given the circles 2 ( x 2 + y 2 ) - 12x - 4y + 10 = 0 and

x 2 + y 2 + 5x - 13y + 16 = 0, find the length of their common chord.    4

2

&- dx.    2

c) Evaluate


y/2 - x + yfx

0







Attachment:

( 0 Votes )

Add comment


Security code
Refresh

Earning:   Approval pending.
You are here: PAPER Pre University Board 2009 P.U.C Physics, Chemistry, Maths