How To Exam?

a knowledge trading engine...


Veer Narmad South Gujarat University 2010 B.Sc Nursing Mathematics : - 2 F.Y../B.A . - Question Paper

Saturday, 27 April 2013 11:00Web



RR-0631 First Year B. Sc./B.A. Examination March / April - 2010 Mathematics : Paper - II

(Calculus & Differentiate Equations)

(Old Course)

Hours]    [Total Marks : 105

Time

%?Kl

00




M    CnsLLnlcj.L{l [qoicu    u? snqw <h>h41.

Seat No.:


Fillup strictly the details of signs on your answer book.

Name of the Examination :

F. Y. B. Sc./ B. A.

Name of the Subject:

Mathematics 2 (Old)

Student's Signature


-Subject Code No.:

0

6

3

1

-Section No. (1,2,.....): Nil

(0 HHl UMHl (3tR ?HlHl.

(3) WiO.    d UMdl %|R d.

M &IHI-H did *lL.

*1 -Mdl Wldi WUH ?HLHl :

(<l) y = x\ogx dl ?iWl.

1-x2

U) f(x) = e , xe[-l,l] HLa    nm\l.

(3) lim/9 X &Hd x>71/2 secx

(y) 3/= x2 (;r + 2) <W-(l <ttdl (0,0)    hM..

(h) lOid j' = logx mm ?HH:?HdH d.

k/2

(?) J sin3 xcos2 x dx-fl Old %iM.

0

(0) 6M: = e.

dx

U) z = x +3xy +3x y + y 6lH dl

dy

3 2

a z dxdy


{<>) sinx + 4,ycosx = cotxdl *U<jh&r& HHHH ?iWl.

ax

dy

dy

(*lo) (3&Hl : y-x = edx .

dx

\ (*l) % y = log (ax + b) ; ax + beR+ Ah dl y *iWl Hd

d hM = log 2x + 5x + 3 Hia y_ *iWl.

m

Ah dl lOid i

(h) J'


2+2) +2+(2+!) x+i+(n2-m2)yn= 0

x


_2x

U) % = e x cos xsinx A.H dl %iM.

(?h) % 3; = eax sin (6x + c) Ah dl yn HlHl ?Hd d HVfl. y = ex sin (4x +1) HIS yn ?iWl.

(*) y = emsm~lx Ah dl *lP>ld *>U

1 - *2) yn+2 ~ (2n+!) x+i - {n2+m2) yn =0

/ \ -v    x2 + 4x +1 . . . .

U) % >= >-2- LH dl J' *IM.

x + 2x -x-2

3 (?H) 611311 HHHK H.HH <HHl Hd RilOid

, v ,. tanx-x

(*0 h 2- &Hd SM.

x0 x tanx

r3 r5 7

(&) ifcld 3Rl sinx=x---1-----1-....

3! 5! 7!

3 (?h)    H.HH 5Hd lOid    6

(H) lOid S$L I    e

a-6 -i _i a-b ,    ,x - < tan a-tan b<--;[0<a<b)

1 + a    1 + bz

xex - log (l + x)

xO     &Hd ?iWl.    6

X (*l) J sin xdxi 181 Hiql 5Hd d HVtt J sin5 x dx 6

(H) j' = x4 - 6x3 + 12x2 + 5x + 7 dl-Uit IM|*iL    6

U) y = X ~5X + Idl ?Hdd    6

x - 3

H*l<U

X (*l) M H51 y = f(x) Hia lOid S$L I    6

7 2 <ttdl k =-

2\3/2

1 + 1

(h) j> = 3x5-40x3 + 3x-20 *id*KlHl (M *idH e ?HH:?HdH Hd d d

7 dx

U) i L 2\4 -fl &Hd

0 l + x

H (*l)    ?Hd ddl (3K1 HLSdl &d <lsWL.    6

(<h) (3&Hl : (2xj' + j'-tanj')dx + |x2-xtan2 j- +sec2 1 = 0 . ?

U) 6M : - + = xy2

dx x

H*l<U

M (*l)    Mdx + Ndy = 0 Hd d HlMl 5Hiq.%HS e

5Hd HHLkl %Rd <HHl 5Hd lOid S$L.

(h) 6M : (x2+j'2l (xdx +j'<ij') + (x(ij'-j'(ix) = 0 .    e

U) 6M : (1 + X2]j + y = etan .    M

e (*i)    f(x,y,p) = 0, % p Hia 6ki-{h Ah dl dd e

Gk-tqHl ld ctstcfl.

(h) 6M : 3; = 2px-ip2.    e

o

(&) (3&Hl : sinpx cos j' = cospxsin y + p .    6

H*l<U

e (*l) C-lL5lL [ciM    C-tHl ?Hd ddl (3K1 HLSdl &d    6

(h) (3&Hl : j' = /?tan/? + logcos/?.    6

U) (3&Hl : x2, (y - px) = yp2,.    

ENGLISH VERSION

Instructions : (1)    As per the instruction No. 1 of page no. 1.

(2)    Answer all questions.

(3)    Figures to the right indicate marks.

(4)    Follow usual notations.

1 Answer the following questions :    15

(1)    If j' = xlogx then find yn.

(2)    Verify Rolles Theorem for the function

f(x) = e1~x , x e [-1, l] tanx

(3)    Evaluate : im/0    .

v '    x>7i/2 secx

(4)    Obtain curvature of the curve y = x2(x + 2) at (0,0).

(5)    Show that ,y = logx is always concave downwards.

k/2

f 3 2

(6)    Evaluate : J sin xcos xdx.

0

(7)    Solve : - = ex+y.

ax

d2z

(8)    If z = x3 + 3xy2 + 3x1 y + y3 , then find

dxdy ' dy

(9)    Find the integrating factor of smx-+ 4,ycosx = cotx

ax

(10)    Solve -.y-x- = edx .

ax

2 (a) If y = log (ax + b) ; ax + be R+ then find yn and    6

hence find yn if y = log|2x2 + 5x + 3

c i-\m

2 2 1

v    /

+2 yn+2 + (2n+1)xyn+i+[n2-m2)yn=-

X

(c) If y = e2x cos2 x sin x, then find yn.    6

OR

2 (a) If y = eax sin (bx + c), then find yn. Using it obtain 6

yn for y = e3x sin (4x +1).

-l

(b)    If y = emsin x, then prove that    6

1 - *2) yn+2 - (2n+!) xyn+1 -(n2+m2)yn = o

X2 + 4x +1

x +2x -x-2

3 (a) State and prove Lagrange's Mean-Value theorem.    6

tanx-x

*0 x tanX

X X x}

3! 5! 7!

OR

3    (a) State and prove Cauchy's theorem.    6

(b)    Prove that :    6

d-b    _i    _i a-b ,

- < tan a-tan b<--;[0<a<b)

1 + a    1 + bz

xex -log (l + x)

(c)    Evaluate : j.11    2    .    6

4    (a) Obtain the reduction formula for J sin x dx and    6

f 5

hence evaluate I sin x dx.

(b)    Find the point of inflexion for the curve    6 y = x4 - 6x3 + 12x2 + 5x + 7

i-10

x-3

OR

4 (a) For any curve y = f{x), prove that    6

*2

curvature k

2\3/2 i + yf

(b)    Obtain the intervals in which the curve    6

y = 3x5 -40x3 + 3x -20 is concave upward or concave downward.

7 dx

(c)    Evaluate : I L 2\4 .    6

0 \1 + X 1

5 (a) State Linear Differential Equation and explain the 6 method to solve it.

(b)    Solve: (2xy + y-tan y)dx + |x2-xtan2 j' + sec2 yjdy = 0. 6

dy y 2

(c)    Solve : -jL + - = xyji.

dx x

OR

5    (a) State and prove the necessary and sufficient    6

condition for the differential equation Mdx + Ndy = 0 to be exact.

(b)    Solve : (x2 + y2 J (xdx + ydy) + (xdy- ydx) = 0 .    6

(c)    Solve : (l + x2) + y = etan~lx.    5

6    (a) Explain the method to obtain general solution    6

of the differential equation f (x, y, p) = 0, if it is solvable for p.

1 9

O

(c)    Solve : sinpx cosy = cospxsin y + p.    6

OR

6 (a) State Lagrange's differential equation and explain 6 the method to solve it.

(b)    Solve : j' = /?tan/? + logcos/?.    6

(c)    Solve x2 (y-px) = yp2.    6

RR-0631]    7    [ 500 ]







Attachment:

( 0 Votes )

Add comment


Security code
Refresh

Earning:   Approval pending.
You are here: PAPER Veer Narmad South Gujarat University 2010 B.Sc Nursing Mathematics : - 2 F.Y../B.A . - Question Paper