How To Exam?

a knowledge trading engine...


Bangalore University 2008 B.Sc Mathematics III Maths V - - Question Paper

Saturday, 23 March 2013 03:45Web



AN - 1318

i

l

i

III Year B.A./B.Sc. Examination, November/December 2008

(1999-2000 and Onwards)

MATHEMATICS (Paper j V)

Time: 3 Hours    i    Max. Marks: 100

i

Instructions : 1) Answer all the questions.    ;

2) Answers should be writen completely in Kannada or in English.    !

i

I. Answer any twenty questions :    j    (20x2=40)

1) Define a ring with unity and give an example of a commutative ring without unity.

2rProve that S = over integers.


b 0

3)    Prove that the subring 2Z = j 2/ e z j isan Idel of (Z, +,.)

4)    If f :R R' is a homomorphism, then prove that if (0) = 0'.

*    I

5)    Express (-2, 2, 3) as linear combination of (1, -1, j3) and (-1, 1, 0) of V3(R).

1

Tind whether vectors (1, 0, 1); (1, 1, 0) and (-1, 0, j-1) are linearly dependent.

7)    Prove that T (xY, x2, x3) = (0, x2, x3) is a linear transformation of V3 (R) to V3 (R).

8)    Find the matrix of the linear transformation T: j/2 (R)V2 (R) defined by T (x,y) - (x, - y) w.r.t. the standard basis.    |

1

9)    Draw the graphs of 2x + 5y < 180; 4x + 2y < 80; x > 0; y > 0.

10) Define i) basic solution ii) degenerate solution. j

1.1) Prove that intersection of two convex sets is a convex set.

!

12)    Show that S = j x 2y = 5 j ls a convex setJ

7    i

13)    If 0.777 is the approximate value of , find the absolute error and percentage errors.

14)    Find a real root of x3 - x2 -1- 0 in (1,2) using bisection method in two stages.

|    P.T.O.



15)    Write the Newton-Raphson formula for the solution of f(x) = 0.

16)    Evaluate A (tan-1 x).

17)    With usual notations, prove that A = E -1.

18)    Express f(x) = 3x2 + 2x -15 in factorial notation. l)HEvaluate    j

i) A2 [2x(3)]    ii) A2 01 j

26)Evaluate:    |

21) Write the Lagranges interpolation formula for unequally spaced arguments. 22Construct the forward difference table from thJ table

X

1

2

3

4

5

f(x)

4

13

4

73

136

dy    |

23)    Find the two solutions of = 1 + xy; given y(0) = 0 by Picards method.

24)    Write the Runge-Kutta formula for solving I dy

= f(x,y)at (x,y0)

dx

II. Answer any two questions :    !

(2x5=10)


1)    Prove that every finite integral domain is a field. I

2)    Prove that the intersection of two subrings is a subring.


1

   If P is an integer, then prove that pz ~ G Z | *s a maximal ideal of (Z, +,.)

if and only if p is a prime.    j


AN - 1318

III.    Answer any two questions :

-3-


(2x5=10)

} is linearly dependent iff


1)    Prove that the ordered set of vectors {ap a2,......, an

some one of a-t (2 < i < n) is a linear combination of its preceeding vectors.

2)Find    the dimension and basis of the subspace spanned by the vectors (2, 4, 2);

(1, -1,0), (1,2, 1) and (0,2, l)of V,(R).    |

3)    Find the matrix of the linear transformation

T: V2(R) V3(R) defined by T(x, y) = (x + y, x, 3x - y) w.r.t. standard basis.

4)    Find the rank and nullity of a linear transformation defined by T(x, y, z) = (y - x, y - z) and verily rank-nullity theorem.

I

IV.    Answer any two questions :    (2x5=10)

1)    Prove that any convex combination of two points ofj a convex set S is also in S.

2)    Maximise graphically Z - 3x + 5y subject to the constraints x + y < 30; x - y > 0; x<20, y >3 and y <12.

3)    Using simplex method, maximise P =-5x + y + 4z x-Fy + z<5;y + z<3;x-fz<8, x, y, z > 0.

subject to the constraints


A company produces two types of pens A and B, where A is a superior quality and B is a lower quality. The profit on each of A and B are Rs. 5 and Rs. 3. The raw material required for each pen A is twice as that olf B. The supplyis sufficient only for 1000 pens of B. The pen A requires a special clip and only 400 such clips are available. For the pen B, 700 clips are available. What is the production plan to get maximum profit ? Solve by graphical method.

V. Answer any three questions :

1)    Obtain the approximation of loge (1 + x) in the form of a second degree polynomial and hence evaluate loge (1.2).

2)    Find a real root of x4 - x -10 = 0 by Regula-Falsi method which lies between 1.8 and 2.    I

3)    Using Newton-Raphson method, find the root of x3 - 2x - 5 = 0 which lies between 2 and 3.

1

4)    Find a real root of cos x ~ xex = 0 by iterative method which is near x = . "Solve 5x - y - 2z = 142, x - 3y - z = - 30 and 2x - y - 3z = 5 by using

Gauss-elimination method.

jStjsing Jacobis iterative method, solve 10x + y + z = 12; 2x+10y + z = 13 and 2x + 2y +10 z = 14 .

(3x5=15)




(3x5=15)

Answer any three questions :

1) Using separation of symbols, show that

U0 -U, + U2 - U3 +.....= ~- U0 - j A U0 + A2 U0A3 U +

   2 4    o    ; 16

Tind the polynomial f (x) from the data

Jf\r


X

0

1

2

3

4

f(x)

3

6

11

18

27

3)Estimate the population of a town in the year 1955 from the data.

Year

1921

1931

1941

1951

1961

1971

Population (in lakhs)

20

24

29

36

46

51

Find f (8) and f (15) from the data.

X

4

5

7

10

11

13

f (x)

48

100

294

900

1210

2028

r52    3    . I

5) Evaluate J loge x dx by Simpsons - rule for six intervals.

dy

6) Using Picards method, solve = x + y for x = 0. II. Given that y =*1 when x = 0.

dx




(20x2=40)


a,beZ    sbe02x2    doojbd ?roddoo>dodD

a 0 b 0


2) S -


i/seoa.

3)    2Z = j Zrj/ e 2 | doccbs), (Z, +,.) doo>d >d>eF <aodb &wo*>.

4)    f : R-R' a&aed/dedrdf Add, f (0) = O' <od}(AjDQ&.

5)    V3(R) (-2,2,3) <ao&oodsk(1, -1,3) doo(-1,1,0) dbdtf edraatorbdoudotoO.

6)    (1,0,1); (1,1,0);(-1,0,-l)7oarddoor(od3db.



7) T: V3 (R)-> V3 (R)?3bT(xl, x2, x3) = (0, x2, x3) <aoci> tfyStop&azri, &

dQ5330d >OC>

8)    T: V2 (R) -> V2 (R); T (x,y) = (x, - y) zSdtf d/ssraodd $ccb ejpad&dbrtbrssrod

u

&sedd?db tfodb&cOoO.

<

9)    2x + 5y < 180; 4x + 2y < 80; x > 0; y > 0 cDoeo, .essfefrdz&rttf de<sro aasfcdb >s&.

10)    S33 30V.

.1) doodOarod    2) &orfc3 dossd :

eJ     j

11)    <addb ercte rtorte* eed?5oo db3    Adbd <aodb

12)    S = j x y+ 2y 5 r    <aodb &ae.

13)    -wororaddcto 0.777 ycrt'dbddtoed arto

9    &    .    <

14)    x3 - x2 -1 = 0,dd s3s?od dbjs<yd?3b, (1,2) d<) db-Dras dbOod<addb dod<) odb 6oScCoO.

15)    f(x) = 0 riaoetfdra dosrodd?fodA*bd 35?- ody ?fodcfc> wdotoo.

16)    A (tarT1 x) fk tfodb&ScCo.

17)    Aisdta e&rteod A = E -1 aorib.a3QAi.    ;

18)    f (x) = 3x2 + 2x -15 'sdsb speOcdbcf dddOwdcOoO.

19)    1) A2 [2x(3)]    2) A2 03 c) tfodb&josoO.

A2

x odbfioo2oo.

20)


21)    dnozSodb sfed sdjdb e?db oodacrort todcooo.

22)    dd dbcg eiswo dyo&>sb wdocoo.

-c    t so eJ

X

1

2

3

4

5

f(x)

4

13

4

73

136

dy

23)    dodsfo wdoiGeftA = 1 + xy; y(0) = 0 <sidd eadsk dosudnVq

dx

odb2oo!oQ.

24) = f(x,y)oi>?b (x 0, y ) aid 5ico dort-    udowa.

dx

1


AN - 1318    -6-

(2x5=10)

II. oiro)cradcta *>d:& wdOA):

1)    Kc&raorib doaod    sod Aribddodb

2)    <adc> eroddoo&rte* qJed eraddoccbAdbdd <aodb ;Lpa.

3)    Pz = |%Gz J dSdbe/ soQo&o* t?r|ddd, p sbdb do s>;!b

&dedraft;p*>0.    . i

i

4)    f: R R' stoedrsedjro wcrort, f(R); R' eraddocabdod)

III.    (c53dd<dci)r(av)0    (2x5=10)

1)    n dotod *Osfrte>d {a,,a2,......, an}    z*odo A>dtf odoo&cdtarfdedd

oatoscjDddta SoodbAiOd at (2 < i < n) odbo wdd koQcbLOdrfe?a>c& eiQedraoiraAddeb dsb ?3D5b cDod) stoeO&.

-D

2)    (2,4,2); (1, -1,0); (1, 2, 1) db&(0,2, 1) Sod eruo&srtod V3 (R) erod Qd db&p> wpsd dssb dodjrarttfe&tfodb fioQcCoo.

3)    T: V2(R) -> V3(R); T(x, y) = (x + y, x, 3x - y) dd djasraoddd >o3bdbd?& ocsbfcsouoo.

4)    T (x, y, z) = (y - x, y - z) <odb    4i dtf djssjDoddd cos* dbdb

) 2)    [    0    C

tfOkS ri&QodD&Qocoo dodo * oos*- ctf* sdDecdbdjdb 33s?5e@.

IV.    oifcs$c&dd/D <sdc> enOA):    (2x5=10)

1)    zodo eroc&rtrad ddo &ot)rte* erod e&set&lcdbo e? em?& rradOabc dbddodb ;sdQ*>.

2)    $8 dbdjdb m)doif3eA :    !

7    u\    t<    I

rta&pfo&: Z = 3x + 5y

9>2Jo$rteb: x + y < 30; x ~ y > 0; x < 20,y>3db& y< 12

3)    ftosdDddafoeAS) rfOC&: P = 5x + y + 4z ; w>zjo$rteb: x + y + z < 5; y + z < 3; x + z < 8, x, y, z > 0.

4)    toodb odDcdbo <add) dddd s&forteftb A dbdb B dojteosbdd. A eruddo dbudo , B

7    <=<    -O    I    _o    -e    eJ Q

dcsdburib. cdrsodo A dbsb B dskrteod &7t)d Rs. 5 dbdj Rs. 3. A sftart derbd &3dJb B dddddx 1000 B dbrtert sarbdddj <sd. 400 A dart, 700 dcrtebB dart o<Dd, Oa3ex>osoiod A dbB do!jsQde?b <doiood?i) rfsa tfdbaod

=l tA '








Attachment:

( 0 Votes )

Add comment


Security code
Refresh

Earning:   Approval pending.
You are here: PAPER Bangalore University 2008 B.Sc Mathematics III Maths V - - Question Paper