Chhattisgarh Swami Vivekanand Technical University 2007-4th Sem B.E Electronics & Tele-Communication Engineering (Mathematics-4, -07) - Question Paper
U. E. (Fourth Semester) Examination, Nov.-Dcc., 2007
(AEl, El, Et St T Kub'b. Ilraucli)
MATHEMATICS-1 V
Time Allowed : Three hours
Maximum Marks : 80
Minimum Pass Marks : 28
Note : Attempt all questions. Each question carries equal nuirks. There is internal choice in each question.
1. (a) Find J0(x) and J, (je) . 2
(b) Solve is series the equation : 10
328411(14) *TO
>* **f+ +*m# <%* *4f' ft& <*&# * , |
V* +r W 4? If. 'sfv'-isti**** 'V if-' / '<** '***& ***** 2 **(W 0&/'-. .<-kKWV*'** ytW iMflPHiw>>rfi Sfrf -1(jt+jritm* *0tt*0( *&**&** * |
s
* I Or
A rod ot lagih / with tasnUtcd ado a initially it a &teVraw, Itt ends are wdiealycooled. to 0*C aod are kspt zt that teseaaorc. Fnd *e teapen&re taction (c, f).
(e) Sotvc * 7 * wbkfa awo the
(0./)(/./)*(x.0)0 md
t
M* 00 ~
Or
A tnsszsxuMa fane IOCO bn loot a imcilty uoda ptady*aic coodtboctt wiih potmrrtl 1300 wots *l tfaessdaf csd(x-0)iad 1200 voi&ai the receiTi&g cad (z * 1000X The tenamil ead of the foe is suddenly grrwyvlmA but tf* pOttTltaJ ( the SOUTCe t$ kept It 1300 Tote- Airainntlhciaduittpccapdkaiaaccto be oegltpble, find (he poCrrtfa? E (r, /).
Uoil-JV
4. (*) Write sbout Initial value theorem for Z-tnnsform.
(b) Z-tnnsform. solve (fae difference equation:
+*" mSr
I $ I Or
Ftod the tnvcne 2-traasforra of: 2x
(e) FtaJ tfae amc Z-tnaafom of: x*-Sr1+tr-4
Or
Sbtc aad prove the Fifaal VUae tbeoraa fix x-transfana.
Unh-V
5. (a) The duly cooaarybon of tkctnc pcrtr ( sslboca of kW-hows) is a random vanabte having txobab&tydmsity fuactkn:
/(x)l'J W 1 0. xSO*
If ibe total productoa is 12 million kW-bour*. 2 determine the probability that there is power cut
(shortage) oo any given day.
x>0
(b) A die is tossed thrice. A success is 'getting 1 or 6* oo a toss. Find (be mean and tbc variance of tbc oumbcr of accniti.
Fiod ihe mean and variaiKc of Binomial Dntribulkxv
(c) Fit Poisson distribution lo ihe following dau:
x, : 0 I 2 3 4
Observed
frequcacie'
ft : 30 62 46 10 2
Show (hat the area under the normal curve is unity.
U. E. (Fourth Semester) Examination, Nov.-Dcc., 2007
(AEl, El, Et St T Kub'b. Ilraucli)
MATHEMATICS-1 V
Time Allowed : Three hours
Maximum Marks : 80
Minimum Pass Marks : 28
Note : Attempt all questions. Each question carries equal nuirks. There is internal choice in each question.
Umt-I 1. (a) Find J0(x) and J, (je) . 2 (b) Solve is series the equation : 10
328411(14) *TO
>* **f+ +*m# <%* *4f' ft& <*&# , |
V* +r W 4? If. 'sfv'-isti**** 'V if-' / '<** '***& ***** 2 **(W 0&/'-. .<-kKWV*'** ytW iMflPHiw>>rfi Sfrf -1(jt+jritm* *0tt*0( *&**&** * |
s
* I Or
A rod ot lagih / with tasuUtcd ado a initially it a &teperaw, Ics cads arc tuddeoly cookd. to 0*C aod are kspt zt that teseaaorc. Fnd *e teapen&re taction (c, f).
(c) Sotvc 0 fakb awo the
(<*./)(/./)*(*.0)0 md
t **
M* 00 ~
Or
A tnsszsxuMa fane IOCO bn loot a imcilty uoda Uody*saic coodtboctt wilh potmrrtl 1300 wots al tfaesodaf csd(x-0)aad 1200 nobs anberccefri&g cad (z * 1000X The tcnninal end of ihe line is suddenly grrwyvimA but the poeen&a] at the source is kept at 1300ToAiraTmtihciaduittDceaodkkatnccto be oegltpble, find (he poCrttfa? E (r, /).
Uoil-JV
4. (a) Write about Initial value theorem for Z-transform.
(b) U"! Z-tnnsform. solve the difference equation: +*" mSr
I $ I Or
Ftod the tnvene 2-traasforra of: 2x
(e) FtaJ tfae amc Z-tnaafom of: x*-Sr*+tr-4
Or
Sbtc aad prove the Fifaal VUae tbeoraa fix x-transfana.
Unh-V
5. (a) Tbc duly cooaarybon of tkctnc pcrtr ( sslboca of kW-feows) is a random vanabte having probability demity fuactkn:
/(x)l'J W 1 0. xSO*
If the total productoa is 12 million kW-bour*.
2 determine the probability that there is power cut
(shortage) oo any given day.
x>0
(b) A die is tossed thrice. A success is 'getting 1 or 6* oo a toss. Find tbc mean and tbe variance of tbc oumbcr of accniti.
Fiod the mean and variance of Binomial Distribution.
(c) Fit Poisson distribution to the following (bu:
x, : 0 I 2 3 4
Observed
frequcacie'
ft : 30 62 46 10 2
Or
Show (hat the area under the norma) curve is unity.
Attachment: |
Earning: Approval pending. |