How To Exam?

a knowledge trading engine...


Gujarat University 2005 B.Sc Mathematics First Year - Question Paper

Tuesday, 14 May 2013 10:15Web


FYBSC Mathematics-II New

Seat No.

FB-02

Time : 3 Hours]

Mathematics Paper-Ii (New Course)

[Total Marks: 105

*Wl : (1) 4L UMULHL <H Slid HMl

(2)    LLL > VlMl-il <a"l.

(3)    &$. Vi-i-iL p %R*il .

1. (a) y.4cm> (Adjoint) iMis-fl. -LL"m 4LUl. >L A = [alJ]n 4 n-i"iL-il =Mk%l iLli i*L ll y.lfclL h3.1 h A (adj A) = (adj A) A = |A| In.

4-1=11

(a) i.[L-LL UCrl (Transpose) L[Lh-{l c-.i"--LL 4LVlL.

>\ A 4 m x n UM-il ii[Lh 4-i B 4 n x p HiL-il i.[L l-L ll Li[LL hlL h (AB)T = BT at.

(b) L[ih-iL hi[-Ll -LL"m 4LVlL.

3 2 0 -1

iUSlh


-ii ilfe SlM.


1 -12 2

0 1 -3 -1

(c) Li L 4b LLi :

(1) i[irL 4-i [C&LPid L[ih-il cLL"LL 4LUl.

2 3 1

iLli A = hL.


-i LPid 4-i [C&LPid i.[LdL L.ciLL v.


4 3 1

11 2 4

(2) iLli A =

2 1 4 4 3 1 1 2 4


l-L Li A-1 SlM.


2. (a) iky. i.[L HL LL"i[L i5-L 4-i C'LL"i[Lh *l[-$L-{l c-ll"-ll 4lv1

10 0 "

2    10 -il <rLL"i[L iS-Ll 4-l <ai"lllh %lfeL SlM.

i.[L A =


3    0 0

rt tl"t[li .dlist stM yd

A8 - 5A7 + 7A6 - 3A5 + A4 - 5A3 + 8A2 - 2A + I cQ [dUSl xtl*tctl it[Sli

(b) t[li A =


tttt.

%ttli2Sl [rt 5x + 3y + 7z = 4

(c)


3x + 26y + 2z = 9

7x + 2y + 11z = 5 dt Wnl [dq.Hdt QudtH i& Qk-t d.ct\.

y-l=ll

Std-Plcar. ntl ct"t\ yd yl it.

2. (a) (b)


%ttli2l lCrt

x + y + z = 3 x + 2y + 3z = 4

X + 4y + 9z = 6 dl lOldcll *lh lLt yd [".Vl lUHdl t QCt

7-13 6 1 4 2 4 8


rlt t*tfct $|M.


(c)


dcl.

Std-Plcer. uddt Gudll M it[Sli


feqat tdliSl

3. (a)


4 4- /iKv3 -i- 6cx2

ax4 + 4bx3 + 6cx2 + 4dx + e = 0.


a, b, c, d, e e R, a * 0 d QisCtctldl 2l2ldl 2ld y.H'lctl.

y-l=ll

[t-tlrl ldliSl

(a)


ax3 + 3bx2 + 3cx + d = 0.

a, b, c, d e R, a * 0 d Qk-tctl HlXdl iliddl 2ld %tmct\.

(b)


   3.l2ldl lt x4 - 10x3 + 44x2 - 104x + 96 = 0 Gift!.


   illrtrll lt %t*Hil x3 + 6x2 - 12x + 32 = 0 Qk-ll.


   >\ a, p, y y tldli.Sl x3 - 12x + 16 = 0 dl &tl> t*t dt dlddl &ft>'cttt


ld d *l lSlt :

n3 + 44x2 3 + 6x2 x3

y>tli3.Sll dc{t.

(i)    (a - P)2, (P - y)2, (y - a)2 yd

(ii)    a (p + Y), p (Y + a), Y (a + p).


UllC-ld %L4dl R2 Hi Ll4q.-l y>ll4L - = 1 + e cos 0 *L.cl.

MWl

4. (a)

(a)

(b)


a [lllcll.l M-l (5, a) 4-q.L.L    cfti.    >1 cl. HciHM

XRLR -LLL rll    L .cl!

LL rl *l LsH :

(1) >l m4cHl UWR C-lH dl[lciLM\ P'SP M-l Q'SQ li. rH LL[ll 41 4

11

+    = m=m. .

SPSP' SQSQ'

(2)    y>ll4L r = a cos 0 + b sin 0, a, b tR MLC-l, M q.-L [-lL 4. $ LH LrLlcll Aw A-. 4- mA Bmi SlM.

(3)    >l R3 Hi 416 [L--LL [[Cl-i. ll*l (4, , 4) \ii Ll Adi 4Lrlll mA Llctll ll*l *1.4.

Llci4 x2 + y2 + z2 = a2 XRdl [Sl- P(a, p, y) MLL.dl *UldCL-L y>ll4L A.cl.

z2 = a2

5. (a)

(a)

(b)


MWl

3

LlClrL 41 4 R Hi %LHdCL M-L LlCl4-H LLLLL Mi cl. $.

Ll A *l U3ll :

(1)    a -Ll 46 OtHd Hl %LHdCL x + y + z = a,

UCLA x2 + y2 + z2 - 2x - 2y - 2z - 13 = 0 -L *U$T ? 4ill Pl-m! M-m! -Lli. ?

(2)    yiPld 41 4 LlCL4\

x2 + y2 + z2 + 4x + 4y + 4z - 13 = 0 mA

x2 + y2 + z2 - 20x - 36y - 14z + 73 = 0 HR*ll *M.1 $.

2

(3)    cl.. - - 2- . (1, -2, 3) + 3 = 0, - . (1, 5, -7) = 45 -LL 4- M-l &W A.cjl.

R3 Hi Pi- (a, p, y) Hl-ll UR -Lrll M-l LlCL4 x2 + y2 + z2 = a2 -L wlrll 4 ".LM\ cii.L ufeusil y.*ll4L A.cl.

6. (a) (a) FB-02


MWl

R3 Hi "U :x~r- = yp = zY >H\ M"i li. M-l (3mi r li. M=U    l    m    n

y.Hd.L4R-l %LtlJR'3L A.cH.

(b) olHl L *l U3lL :

(1)    RlpM- (a, p, y) H-L HLHLPq.' y1 = 4ax, z = 0 H=LL Si-i PlMliL Hm.cH.

(2)    yiLd iPl i xy + yz + zx = 0 PLHi fcSlM. $, L-lL $LM, H*l (Miilm H-L H"L Hm\.

(3)    Hi PLH-WLiLP (4, -5, 3) Pl-hM UR -LLL L-tl H"L z-H"L-l PLHMP L-LL [5|- (5, -2, 6) h|L-LI UR -LLL . HL PLH-MLMP-i PLMliL Hm\.

7. (a) PLHtLCL lx + my + nz = p -Im. SlLi cc> ax2 + by2 + cz2 = 1 -l L HL-ll ?LPL Hm\ Lhl> PU$1[Sl-.-U M.LH hLcH.

WWl

(a)    UPci-lW ax2 + by2 = 2z -ll L-Ll UP-ll [S{- (a, p, y) HI-lL [LCL-l PLMliL hlcCl.

(b)    Lh. L *l U3ll :

(1)    Hi Hlxmw 5x2 - 4y2 + 7z2 = 139 -ll PLHtLCL 20x + 4y - 21z = 19 -l PLHldP ?M.lriCL\ -ll yMlill H-l Lhc-LL PUL-Hl HCcLC.

x2 y2 z2

a b c


(3) PLLpl! iPl i I -ll [5hl| HL PLHdCL



Mathematics Paper-Ii (New Course)

[Total Marks: 105

(1)    There are seven questions.

(2)    Attempt all questions.

(3)    All questions carry equal marks.

1. (a) Define adjoint of a matrix. If A = [a is a square matrix of order n, prove that A (adj A) = (adj A) A = |A| In.

OR

(a)    Define Transpose of a matrix.

If A is m x n matrix and B is n x p matrix then prove that

(AB)T = BT at.

(b)    Define rank of a matrix.

3

2

0

-1

1

-1

2

2

0

1

-3

-1


Find the rank of a matrix

(c) Attempt any one :

(1) Define symmetric and skew-symmetric matrices.

2 3 1

Express the matrix A =

as a sum of symmetric and skew-

4 3 1 11 2 4


symmetric matrices.

(2) For the matrix A =

2 1 4 4 3 1 1 2 4


obtain A 1.


(c)

2.    (a) (b)

(c)

3.    (a)

(a)

(b)


-1

1

4


3

4


+ 3bx2 + 3cx + d = 0.


the matrix represented by the expression

A8 - 5A7 + 7A6 - 3A5 + A4 - 5A3 + 8A2 - 2A + I.

Using Crammers rule, obtain the solution of the system of linear equations given by

5x + 3y + 7z = 4

3x + 26y + 2z = 9

7x + 2y + 11z = 5

OR

State and prove Caley-Hamilton theorem.

Discuss the consistency of the following system of linear equations, find its solution using row-reduction method.

x + y + z = 3

x + 2y + 3z = 4

x + 4y + 9z = 6

7

Using Caley-Hamilton theorem find the inverse of the matrix


Attempt any two :

(1)    Solve the equation x4 - 10x3 + 44x2 - 104x + 96 = 0 using Ferraris method.

(2)    Solve the equation x3 + 6x2 - 12x + 32 = 0 using Cardons method.

(3)    If a, P, y are the roots of the equation x3 - 12x + 16 = 0 then obtain the equations whose roots are

(i)    (a - P)2, (P - y)2, (y - a)2 and

(ii)    a (p + yX p (Y + a) Y (a + p).


Explain Ferraris method to solve a Bi-Quadratic equation ax4 + 4bx3 + 6cx2 + 4dx + e = 0.


a, b, c, d e R, a 0


6

2


ax-


a, b, c, d, e e R, a 0 OR

Explain Cardons method to solve cubic equation


In usual notations obtain the polar equation ~ = 1 + e cos 9 of a conic in R2.

OR

4.    (a)

(a)

(b)

5.    (a)

(a)

(b)


Obtain the polar equation of circle having centre at (5, a) and radius a. If circle passes through pole, then what is its equation ?

Attempt any two :

(1)    If P'SP and Q'SQ are mutually perpendicular focal chords of conic, then

, 1 1 prove that cn cn, +    = constant.

SP-SP SQ-SQ

(2)    Prove that the equation r = a cos 9 + b sin 9 (a, b non-zero constants) represents a circle. Also find its centre and radius.

(3)    Find Cartesian and spherical co-ordinates of a point whose cylindrical co

n

ordinates are (4, 4 , 4).

Obtain the equation of the tangent plane to the sphere x2 + y2 + z2 = a2 at the point P(a, P, y) in R3.

OR

Prove that the intersection of sphere and plane is a circle.

Attempt any two :

(1)    For what value of a the plane x + y + z = a touches the sphere x2 + y2 + z2 - 2x - 2y - 2z - 13 = 0 ? Obtain the point of contact.

(2)    Prove that the spheres

x2 + y2 + z2 + 4x + 4y + 4z - 13 = 0 and

x2 + y2 + z2 - 20x - 36y - 14z + 73 = 0 touch each other externally.

(3)    Find centre and radius of the circle

-2 - 2- . (1, -2, 3) + 3 = 0, - . (1, 5, -7) = 45.

Obtain the equation of an enveloping cone having generator touching a sphere

6. (a)

(a)


x2 + y2 + z2 = a2 and passing through a point (a, P, y) in R3.


ugh

OR

x - a y - P z - y Obtain the equation of right circular cylinder having axis = m = n

and radius r in R3.

(1)    Obtain the equation of a cone having vertex at (a, P, y) and guiding curves y2 = 4ax, z = 0.

(2)    Prove that the equation xy + yz + zx = 0 represents a right circular cone and also find its axis, the vertex and the semi-vertical angle.

(3)    If the axis of the right circular cylinder passing through (4, -5, 3) is parallel to z-axis and passes through point (5, -2, 6) then find the equation of right circular cylinder.

7. (a) Obtain the condition that the plane lx + my + nz = p touches the central conicoid ax2 + by2 + cz2 = 1 and also find point of their contact.

OR

(a)    Obtain the equation of the tangent plane at point (a, P, y) to the paraboloid

ax2 + by2 = 2z.

(b)    Attempt any two :

(1) Find the equation of the tangent plane and the point of contact to the hyperboloid 5x2 - 4y2 + 7z2 = 139 of one sheet parallel to the plane 20x + 4y - 21z = 19.

x2 y2 z2 id + y2 + = 1

(2) If the tangent plane to the ellipsoid a2 + t2 + c2

= 1 meets the co-


a b c

ordinate axes in A, B, C then prove that the locus of centroid of A ABC is

a2 b2 c2

x2 + y2 + z2 = 9.

(3) Prove that for all values of X, the plane

- + b + 21 + X    z - 21 = 1

a b c    Va b c

b2


a


c


touches the conicoid


FB-02

Mathematics Paper-II (Old Course)

Time : 3 Hours]    [Total Marks : 105

*l*Hl : (1) 4L UMULHL 4.<H Slid VLMi $.

(2)    HHL > UMidl d"iL.

(3)    -2.4 VLMdl OL %i2*U .

1.    (a) &[-?L 4ci4L$L'{l ciL"ii 4Lui.

>l - = (xi, X2), y = (yi, y2) g R2 li. L-LL - + y = X + X2, yi + y) 4-1

a - = (ax2, 0) a g r ci cm"m[iiL ii R2 qmPUs &fe?L 4c.4in ?

LHL2L WH'. LL-L'L 42.1.

WWl

(a)    y.[-n cLLL'LL GVLLCILL'-Il cii"m 4iiii. >\ A 4-1 B 4 2l[-$L 4C.4L$L V dl L GvllclLLl Ll ll[il 42i 4 A + B VSl V -j GULC.4L?L .

(b)    Ll L *l LLl :

(1)    y.lPiL 42.1 4 A = {(x, y, z) | x + y + z = 0} 4 R3 GULci4L$L .

(2)    R3 -LL Guici4L?L SP {(1, 2, 1), (-1, 3, 2), (4, 5, -3)} Hi 2l[M (2, 1, 1) 41

(1, 1, 2) 4lCIC'LL 4 dfe L d' 42l.

(3)    >\ A 4 y.[-$l 4C.4L$L V dl 4[24L GviOLL li. ll 2Ll[&LL 42l 4

(i)    [A] = A o A 4 V -j Gvllci4ll .

(ii)    [[A]] = [A].

2.    (a) Rn dl y.M'l $,2"l ciLiiiLL 4-. "i 4ci<rLHd'{l CMA". 411.il.

Li[lL 42l 4 L"l 2411x1 ill'll -2.4 Gvioil 2.2.". 2cUi.Tl .

WWl

(a)    LL-rl UHlLl-l l[-SL 4c.hLSL V -il hl&M "i *41-1x1 ll-L V -ii 4lHl *Ll [CilL hl Slhl-L lH -LrLlcil.

(b)    Ll l *l Lll :

(1)    R2 -LL 4LHL3. {(3, 4), (4, 3)} -i LlVl"l y.[-$L (25, 25) -il -LLH cl.

(2)    >\ R3 -LL ?U3L l[-SLl -, -, - "i *41-1x1 l-i ll &irLLciL h - + -, - + -,

- + - VLSI "{ cu-ixi .

(3)    U3L {(1, 0, 1)} -l R3 -LL L Oi-- 4lHl *{M1 cL&Ucd.

3.    (a) *"i Uft4h-{l c-LL"-ii 4ivl

..[.1 hl h >1 T : U V "i Uft4h l-i

o T(a - + P -) = a T(-) + PT(y)

V x, y e U, a, P e R.

421=11

(a)    HLl h T : U V "i Uft4h $. yiO*.! hL h T 4h-4h l-L ll 4-i ll > N(T) = {9u}.

(b)    Ll l *l Lll :

(1)    LL[lrL h3.1 h T : R3 R2, T (x, y, z) = (x + y, y + z) "i uRLc..-!. $

lH> N(T) 4-i R(T) Sllil.

(2)    LL[lrL hl h "i vi[.cil--i t : R3 R3, T (x, y, z) = (x + y + z, y + z, z) c-LM %lVM. $ 4-i T -1 c{l.

(3)    "i Uft4h t : R2 R3, T(1, 1) = (2, 0, 1) 4-i T(2, -1) = (1, -1, 1) l-l il T(x, y) cl Lh> T(2, 3) SlM.

4.    (a) *"i vi[cil-i yi-L Ll-lci iL[Lh-{l c-ii"-{. 4ivl

>1 T : R2 R2, T(x, y) = (x cos 9 - y sin 9, x sin 9 + y cos 9) 9 e R 4lV,Cl "i Ufccik l-L 4-i B1 = B2 = {e1, e2} 4-i R2 -il 4lHl l-L ll il[Lh [T : B1, B2] Lcil.

.Hi. Sl'lici-. ML-liL r = 1 + e cos 0 *im\.

lL L LLl :

(a)

(b)


(1)    "L uR.clL-l T : R2 R3    i A = [T : B1, B2] -LLU W

" 1 2 "

A = 0 1 y-L B1 = {(1, 2), (-2, 1)} LW B2 = {(1, -1, -1),

_ -1 3 J

(1, 2, 3), (-1, 0, 2)} y y-L'*l R2 y-L R3 Hi 'P-LL yiUlL .

(2)    ML-li3L 15 - 3r = r cos 0 iM.L UiL-il mic. -Slici ? L-LL -uMsi-Ll CLSaE Lh> L-L MrMq. ML-liL *Lqd.

(3)    LcflL ULH LL[tLL (2, n/6) y-L (3, n/3) (Sl-yinM UMLL -Led "LL-L

ML-liL $lM. l-LL cLMM -IAc-LL CLSi-Ll CLSaE $lM.

ik-li x2 + y2 + z2 = a2 U-LL [S- P(a, P, y) yiW-U MU$LlL-L ML-liL *Ld.

5. (a)

(a)

(b)


ywi

MLL[5LL iL i Hi R3 LLLCL y-L llLi-il MLLHL-L - yi clL .

l*L L U3lL :

(1)    a -Ll iE [iLL HlX MLHdCL x + y + z = a LlCLi

x2 + y2 + z2 - 2x - 2y - 2z - 13 = 0 -L ? i*il [S-yl (Sl-yi -LLL ?

(2)    MLL[SLL i LLciii x2 + y2 + z2 + 4x + 4y + 4z - 13 = 0 y-L x2 + y2 + z2 - 20x - 36y - 14z + 73 = 0 S.-LVll MUl .

(3)    cilq - - 2 - (1, -2, 3) + 3 = 0, - (1, 5, -7) = 45 -LL is- y-L &W

?iM.

R3 Hi [Si- (a, P, y) *ilLl H-HL3. -Lll y-L liCLi x2 + y2 + z2 = a2 -L MUll MLi ."LiylcLLqi ufeULl ?L-L ML-liL *Ld.

6. (a)

(a)


ywi

r3 Hi ml    = -z-Y >-ii y"L -k y-L [5lll r -k ycii

   l    m    n

MLH-LLil-L MLili 3J3L *Ld.

(1)    [MIS- (a, P, y) yrt ylRC y2 = 4ax, z = 0 lt yctl sirt *tHlihSl SlM.

(2)    yifclcl ihl i xy + yz + zx = 0 fl.Hl &lM. A Vtl $tM, y*t RR:il.Sl yt

y"t Hml

(3)    yi %ttrllir (4, -5, 3) [S-hM xrlr u*t A 14 y"t z-y"t A lttl. t-tl (5, -2, 6) hM ur u*t A. yt %ttrtll2.rt .Hlist Hm\.

7. (a) y.HlCl Ix + my + nz = p iirUt Sl'liO ax2 + by2 + cz2 = 1 A xtl t HlX-l $lhl Hm\ Lh> xt?[[5l-,rtt lt*t Hmt.

yl=ll

(a)    UVtCtW ax2 + by2 = 2z dl M xRdl [St- (a, p, y) ylMTtl *Utrt04 %l*ll.St

Hm\.

(b)    l*t t *l lSlt :

(1) yi y[tq.<aw 5x2 - 4y2 + 7z2 = 139 dl y.Hlt 20x + 4y - 21z = 19 A y.HtR *UtlCtVtl y.HliRSll yl lHtrll xt?[[St-y\ Hlqctt.

x2 y2 z2

(2) Qxlctctt>' + 72 + ~ = 1 rt lCt lt*tt"tl [St- A, B, C Hll A- A tl abc

a2 b2 c2

ll[Stl iH i A ABC rtl    xt-t ~2 + T + T = 9 A.

xyz

(3) ll[Stl iht i X rtl -hi QtHrt HlX a.HrtCt

2x + y + 25 + X Ix - 2* - z - 2! = 1 , *liict> 4 + - 4 = 1 rt

+ r + _ + X I-- ~r- - - 21 = 1 , mio -2 + ,9 - 2

a b c    V.a b c j    a2 b2 c2

*HT A

Mathematics Paper-II (Old Course)

[Total Marks : 105

Instructions : (1) There are seven questions in this question paper.

(2)    Attempt all questions.

(3)    All questions carry equal marks.

1. (a) Define vector space.

If x = (x1, x2), y = (y1, y2) e R2 and x + y = (x1 + x2, y1 + y2) and

a - = (ax2, 0) a e R are defined in R2, is R2 a vector space ? Justify your answer.

OR

(a)    Define subspace of the vector space. If A and B are two subspaces of vector space V then prove that A + B is also subspace of V.

(b)    Attempt any two :

(1)    Prove that A = {(x, y, z) | x + y + z = 0} is a subspace of R3.

(2)    Determine whether the vectors (2, 1, 1) and (1, 1, 2) belongs to the subspace SP {(1, 2, 1), (-1, 3, 2), (4, 5, -3)} of R3 or not.

(3)    If A is a non-empty subset of a vector space V then prove that

(i)    [A] = A o A is a subspace of V

(ii)    [[A]] = [A]

(a)    Every linearly independent subset of a finite dimensional vector space V can be extended up to a basis of V.

(b)    Attempt any two :

(1)    Obtain co-ordinates of the vector (25, 25) of the vector space R2 with respect to the basis {(3, 4), (4, 3)}.

(2)    If -, -, z are three linearly independent vectors of R3, prove that - + -, y + z, z + x are also linearly independent vectors.

(3)    Extend the set {(1, 0, 1)} to two different bases of vector space R3.

3.    (a) Define linear transformation. Prove that if T : U V is linear transformation

o T(a - + P -) = a T(-) + PT(y).

V x, y e U, a, P e R.

OR

(a)    T : U V is linear transformation. Prove that T is one-one if and only if N(T) = {0u}.

(b)    Attempt any two :

(1)    Prove that T : R3 R2, T (x, y, z) = (x + y, y + z) is linear transformation. Also find N(T) and R(T).

(2)    Prove that the linear transformation

T : R3 R3, T (x, y, z) = (x + y + z, y + z, z) is non-singular.

Also find T -1.

(3)    For linear transformation T : R2 R3, T(1, 1) = (2, 0, 1) and T(2, -1) = (1, -1, 1), then find T(x, y). Also find T(2, 3).

4.    (a) Define matrix associated with a linear transformation.

If T : R2 R2, T(x, y) = (x cos 0 - y sin 0, x sin 0 + y cos 0) 0 e R is linear transformation and B1 = B2 = {e1, e2} are bases in R2 then find [T : B1, B2].

OR

2 l

(a) In usual notations obtain the polar equation of a conic in R as r = 1 + e cos 0. FB-02    14

(1)    Obtain the linear transformation T : R2 R3 so that A = [T : B1, B2]

'1 2 "

where A = 0 1 and B1 = {(1, 2), (-2, 1)} and

_ -1 3 J

B2 = {(1, -1, -1), (1, 2, 3), (-1, 0, 2)} are ordered basis of R2 and R3 respectively.

(2)    Which conic is represented by the equation 15 - 3r = r cos 9 ? Obtain length of latusrectum & its Cartesian equation.

(3)    Find the polar equation of the straight line passing through (2, n/6) and (/3, n/3). Find the length of perpendicular drawn from the pole upon it.

5. (a) Obtain the equation of the tangent plane to the sphere x2 + y2 + z2 = a2 at the point P(a, P, y) in R3.

OR

(a)    Prove that the intersection of sphere and plane is a circle.

(b)    Attempt any two :

(1) For what value of a the plane x + y + z = a touches the sphere

2 + y2 + z2 - 2x - 2y - 2z - 13 = 0 ? Obtain the point of contact.

x


(2) Prove that the spheres x2 + y2 + z2 + 4x + 4y + 4z - 13 = 0 and

2 + y2 + z2 - 20x - 36y - 14z + 73 = 0 touch each other externally.

x


(3) Find centre and radius of the circle

-2 - 2 - (1, -2, 3) + 3 = 0, - (1, 5, -7) = 45.

6. (a) Obtain the equation of an enveloping cone having generator touching a sphere x2 + y2 + z2 = a2 and passing through a point (a, P, y) in R3.

OR

(a) Obtain the equation of right circular cylinder having axis

x - a y - P z - y    . 3

j =    = and radius r in R3.

l    m n

(1)    Obtain the equation of a cone having vertex at (a, P, y) and guiding curves y2 = 4ax, z = 0.

(2)    Prove that the equation xy + yz + zx = 0 represents a right circular cone and also find its axis, the vertex and the semivertical angle.

(3)    If the axis of the right circular cylinder passing through (4, -5, 3) is parallel to z-axis and passes through point (5, -2, 6) then find the equation of right circular cylinder.

Obtain the condition that the plane Ix + my + nz = p touches the central conicoid ax2 + by2 + cz2 = 1 and also find point of contact.

7. (a)

(a)

(b)


OR

Obtain the equation of the tangent plane at point (a, P, y) to the paraboloid

ax2 + by2 = 2z.

Attempt any two :

(1)    Find the equation of the tangent plane and the point of contact to the hyperboloid 5x2 - 4y2 + 7z2 = 139 of one sheet parallel to the plane 20x + 4y - 21z = 139.

x2 y2 z2

(2)    If the tangent plane to the ellipsoid ~ + , 2 + ~ = 1 meets the co-

abc

ordinate axes in A, B, C then prove that the locus of centroid of A ABC is a2 b2 c2 _

x2 + y2 + z2 = 9.

(3)    Prove that for all values of X, the plane

2xy 2z . fx 2yz

+ , + + X I--,- _ - 21 = 1 touches the conicoid a b c V.a b c j

x2 y2 z2

2 + u2 - 2 = 1. a2 b2 c2

FB-02    16

1

(a) Define eigen value and eigen vector of a square matrix. Find the eigen values and corresponding eigen vectors of the matrix

Prove that every subset of a linearly independent set is linearly independent.

OR







Attachment:

( 0 Votes )

Add comment


Security code
Refresh

Earning:   Approval pending.
You are here: PAPER Gujarat University 2005 B.Sc Mathematics First Year - Question Paper