How To Exam?

a knowledge trading engine...


Madurai Kamraj University (MKU) 2007 B.Sc Mathematics maths - Question Paper

Thursday, 04 April 2013 05:35Web



(7 pages)

6252/M32

OCTOBER 2007

Paper VII LINEAR ALGEBRA AND NUMBER

SYSTEM

(For those who joined in July 2003 and after)

Time : Three hours    Maximum : 100 marks

SECTION A (8 x 5 = 40 marks)

Answer any EIGHT questions.

1. V OT6imjgJ F OT6imD <56TT;5$aiT    QgUffiUIT

Q6usrflujiranr(su, MS6mL.eu!i)ef>[D rfjlpeijs.

(<&) a-0 = 0 (ae F, OeV)

(<k) 0-u = 0 (veV, 0e F)

(@) (-a)v = a(-v) = -(av) (ae F,vgV) .

Let V be a vectorspace over a field F . Then prove the following:

(a)    a-0 = 0 (ae F, Oe V)

(b)    0v = 0(veV,0zF)

(c)    (-a)v = a(-v) =-(av) (ae F ,veV).

2.    T :V ->W cresrugi 60 60uiq. 2_0LDrrrr)(DLb erstfld) T<y) = {T(v)/aeV} srarrd <956wni> W -m g_6TTQj0f) gtqst

rfj)|p|6lj<5.

Let T :V >W be a linear transformation. Then prove that the set T(V) = {T(v)/veVj is a subspace of

W .

3.    A , B 6T65TU65T ffLD&JlflaOffU-ICfTSTT @0 QfflBJgjgigjl *S46wf)6TT

65TiT6b, At    crsffr&jih AB 0 Q<Fraj@655f)

ST65T6L|Lb f)p6tyS5.

Let A and B be orthogonal matrices of the same order. Then prove that A7 is orthogonal and AB is orthogonal.

4.    ojiflsnff n &_em_uj @0 <efht asrfl A sresfleb (adjA)A = A(adjA) = |A|7 , srssr    I erdsrugji ojiflanff

n &JSKL.UJ 0)6O@c9)685fl.

Let A be any square matrix of order n . Prove that (adjA)A = A(adjA) = \A\l, where I is the unit

matrix of order n .

5. a_6iT Qu0@ Qeusrfl65)UJ 6uan(riup<5. V crssrugji F -sir uSrrssr 6jjiT 2_otQu0@ Qeusrfl 6Tssf]6b

(*s) (u, av) = a(u,v) ae F,u,veV

("4b) (u,v+w) = (u,v) + (u,w), U,V,W&V CT65T

Define inner product space. If V is an inner product space over F , prove that

(a)    (u, av) = a(u,v), ae F,u,veV

(b)    (u, v+ w) = (u,v) + (u,w), where u,u,weV .

<>rfT(D 655flu51r iljDuiSlujaiq

8-6 2 -6 7 -4 2-4 3


A =


ffLD65TUnL.6ff)L_flj 6fT6Wr5j.

Find the characteristic equation of the matrix 8-62'

-6 7 -4

A =


2-4 3

T6ST(D    QfflEJQjSgjj

14 3 2

1    2 3 4

2    6 7 5


7.


6j)iDui51fb@<5 @5)|d)    arrasra.

'1 4 3 2 12 3 4

to normal form


Reduce the matrix

2 6 7 5

and find its rank.

8.    N otottjd OTassrasiflair, sy@uurr6T6tfla5r OT6WTSsrf)ffi65>ffi0nujs ffirrcwTiK.

Find the numbers of divisors of a given number N.

9.    n(n + l)(2n+l) cramo ctw, 6 j,d) 6u@uld srasi rf|)fp6q.

Show that n(n +1)(2n +1) is divisible by 6.

10. 21000 =3(modl3) GT6Tlp6i|.

Prove that 21000 = 3 (mod 13).

4    6252/M32

11.    9 GPCtP OTSTOT655fl6irr dJirffiffiLD 3m ebeog] 3m+ 1 crayip euii|_a51d) |0@lc) otsst<5 asml*.

Show that every square is of the form 3m or 3m +1.

12.    7121+1 ST6STp 6r6ror 719-cb cu@uLb OT65T Show that 7121+1 is divisible by 719.

SECTION B (6 x 10 = 60 marks)

Answer any SIX questions.

13.    90 (LpuGrTCfT uifliorrsror Qeu<si_ir QcuGifluSlsin g-Ggjiih

rffcOOl Q) c|lfj_5jfl365ffTnij<9j6TT ffLD CT65ffT55cf]i$lD$LL(GiTTT (o)QJ<5l_IT<S65)CTTLJ

QurbrSl0ffi0ii> OT65T

Prove that any two bases of a finite dimensional vector space have the same number of vectors.

14.    <s6mi> F -6sr lS65)ld Qcu.$i_it Qeusrfl V -<sirr s-en-Qeustfl W crssfleb, ~ = {W + V7veV} j,65Tgi F -ot lS)

90 Qajffiuir Qeuerfl crafT j)p64<s.

If W is a subspace of a vector space V over the

field F , prove that = {W + V7yeV}isa vector space W

over F .

15.    OTrijaj ffgjij 65sflnujiL|ii), 0 ffLDffiT ssrfl n>fi)pii> 6it OTdlir r cSiaiBfl <j,liu6uiT)j51a!T a.(la;6Drr<5 6j&G|7 6p0 GuySluSlo)

CT(Lp (LplT}-U_(Lb OT65T lp6I|ffi.

Prove that any square matrix is expressible uniquely as a sum of a symmetric matrix and a skew symmetric matrix.

16.    eijQeutr (LpLq_<si_|<sh'<srr uifliBirsrorcnOT 2_gttQlj0.$0 QcuifltL|Lb,    60@ U)_6)!)ujlj QufT)i5l0ffiLb srayr

Prove that every finite dimensional inner product space has an orthonormal basis.

17.    QffiujaSl-ajDn-uSlcbuOTr    cr(Lpl iglpajffi.

State and prove Cayley Hamilton theorem.

18.    6eijQcurr0 sh-L. crssffranasOTiLiih, u<srr er6ror)Seifl6jr Qu0ffiffi6O(T 6G[T 6p0 61JLluSleb er(Lp (Lpiq_U_JLD 6T65T (0p6I(ffi.

Prove that every composite number can be written as a product of prime numbers in a unique way.

19.    n fi0 (y)(ip cresTr srasfld), <p{N) -ssr ld<$ui_| <Knwr<s.

If n is an integer, find the value of <p(N).

6    6252/M32

20.    (s\) 34n+2 + g2n+1 OT65Tp otsrst, 14 ,0) eu@u(5\ii> otqst

flp<51|(5.

(b) X, y, Z OTCTTU65T (ipOTp    (Lp(Lp OT651Sr.OT

ersiflsb, (Z*)3 -3Z;e3 eraiTugj 108 <,60 eu@uLb crara

<[T65ffr<S.

(a)    Prove that 34n+2 + 52n+1 is divisible by 14.

(b)    If x, y, z are three consecutive integers show that (Zxf -3Z*3 is divisible by 108.

21.    Qeo<5(r(r(S5#laSlk G&, (bpis&ns) Gr(Lpl    Slamor GgprDf&mps, 0efil(S.

State and prove Lagrange's theorem. Deduce Wilson's theorem.

22.    x + y + z= 6, x + 2y + 3z=14, x + 4y + 7z=30 ergyii) ffLDeirrurr(5<5sn' Qurr0rf)gjLb srm& ffimlii). ireLjaaoerT.s iS n"ioffffT<5.

Show that the equations x + y + z = 6, x + 2y + 3z = 14, x + 4y + 7z = 30 are consistent and solve them.







Attachment:

( 0 Votes )

Add comment


Security code
Refresh

Earning:   Approval pending.
You are here: PAPER Madurai Kamraj University (MKU) 2007 B.Sc Mathematics maths - Question Paper