MISRIMAL NAVAJEE MUNOTH JAIN ENGINEERING COLLEGE, CHENNAI - 97

DEPARTMENT OF MATHEMATICS

MATHEMATICS (MA2111) FOR

FIRST SEMESTER ENGINEERING STUDENTS ANNA UNIVERSITY SYLLABUS

This text contains some of the most important long answer questions (Part B) and their answers. Each unit contains 15 university questions. Thus, a total of 75 questions and their solutions are given. A student who studies these model problems will be able to get pass mark (hopefully!!).

Prepared by the faculty of Department of Mathematics

SEPTEMBER, 2008

www.engg-maths.com

UNIT I MATRICES

Problem 1. Find the eigen values and eigen vectors of the matrix

	$\left[-2\right]$	2	-3
A =	2	1	-6
	1	-2	0

Solution:

The characteristic equation is $\mid A$ - $\lambda I \mid = 0.$

i.e.,
$$\begin{vmatrix} -2 - \lambda & 2 & -3 \\ 2 & 1 - \lambda & -6 \\ -1 & -2 & 0 - \lambda \end{vmatrix} = 0$$

i.e., $(-2 - \lambda) [-\lambda(1 - \lambda) - 12] - 2[-2\lambda - 6] -3[-4 + 1 - \lambda] = 0$
i.e., $(-2 - \lambda) [\lambda^2 - \lambda - 12] + 4\lambda + 12 + 9 + 3\lambda = 0$
i.e., $\lambda^3 + \lambda^2 - 21\lambda - 45 = 0$ (1)
Now, $(-3)^3 + (-3)^2 - 21(-3) - 45 = -27 + 9 + 63 - 45 = 0$
 $\therefore -3$ is a root of equation (1).
Dividing $\lambda^3 + \lambda^2 - 21\lambda - 45$ by $\lambda + 3$
 $-3 \begin{vmatrix} 1 & 1 & -21 & -45 \\ 0 & -3 & 6 & 45 \\ 1 & -2 & -15 & 0 \end{vmatrix}$
Remaining roots are given by
 $\lambda^2 - 2\lambda - 15 = 0$
i.e., $(\lambda + 3) (\lambda - 5) = 0$
i.e., $\lambda = -3, 5$.
 \therefore The eigen values are $-3, -3, 5$
The eigen vectors of A are given by $\begin{bmatrix} -2 - \lambda & 2 & -3 \\ 2 & 1 - \lambda & -6 \\ -1 & -2 & -\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
Case 1 $\lambda = -3$
Now $\begin{bmatrix} -2 + 3 & 2 & -3 \\ 2 & 1 + 3 & -6 \\ -1 & -2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix}$
 $\sim \begin{bmatrix} 1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 $\therefore x_1 + 2x_2 - 3x_3 = 0$ Put $x_2 = k_1, x_3 = k_2$ Then $x_1 = 3k_2 - 2k_1$ \therefore The general eigen vectors corresponding to $\lambda = -3$ is $\begin{bmatrix} 3k_2 - 2k_1 \\ k_1 \\ k_2 \end{bmatrix}$ When $k_1 = 0, k_2 = 1$, we get the eigen vector $\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$ When $k_1 = 1, k_2 = 0$, we get the eigen vector $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$ Hence the two eigen vectors corresponding to $\lambda = -3$ are $\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$.

These two eigen vectors corresponding to $\lambda = -3$ are linearly independent. Case 2 $\lambda = 5$

$$\begin{bmatrix} -2-5 & 2 & -3\\ 2 & 1-5 & -6\\ -1 & -2 & -5 \end{bmatrix} \sim \begin{bmatrix} -7 & 2 & -3\\ 2 & -4 & -6\\ -1 & -2 & -5 \end{bmatrix}$$
$$\sim \begin{bmatrix} -1 & -2 & -5\\ 0 & -8 & -16\\ 0 & 0 & 0 \end{bmatrix}$$
$$\therefore -x_1 - 2x_2 - 5x_3 = 0$$
$$-8x_2 - 16x_3 = 0$$
A solution is $x_3 = 1, x_2 = -2, x_1 = -1$
$$\therefore$$
 Eigen vector corresponding to $\lambda = 5$ is
$$\begin{bmatrix} -1\\ -2\\ 1 \end{bmatrix}$$

Problem 2. Find the characteristic equation of $\begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{bmatrix}$ and verify Cayley-

Hamilton Theorem. Hence find the inverse of the matrix.

Solution: Let
$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{bmatrix}$$
. Characteristic eqn. of A is
 $\lambda^3 - \lambda^2 [1+1-3] + \lambda [-9-9-1] + 26 = 0$
i.e $\lambda^3 + \lambda^2 - 19\lambda + 26 = 0$

By **Cayley-Hamilton theorem** $\therefore A^3 + A^2 - 19A + 26I = 0$.

Verification:

$$\therefore A^{2} = A \cdot A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{pmatrix} = \begin{pmatrix} 9 & 2 & -7 \\ 5 & 9 & -10 \\ -10 & -7 & 21 \end{pmatrix}$$
$$\therefore A^{3} = A^{2} \cdot A = \begin{pmatrix} 9 & 2 & -7 \\ 5 & 9 & -10 \\ -10 & -7 & 21 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{pmatrix} = \begin{pmatrix} -16 & -21 & 45 \\ -43 & -16 & 67 \\ 67 & 45 & -104 \end{pmatrix}$$

Substituting in the characteristic equation

$$\begin{pmatrix} -16 & -21 & 45 \\ -43 & -16 & 67 \\ 67 & 45 & -104 \end{pmatrix} + \begin{pmatrix} 9 & 2 & -7 \\ 5 & 9 & -10 \\ -10 & -7 & 21 \end{pmatrix} - \begin{pmatrix} 19 & -19 & 38 \\ -38 & 19 & 57 \\ 57 & 38 & -57 \end{pmatrix} + \begin{pmatrix} 26 & 0 & 0 \\ 0 & 26 & 0 \\ 0 & 0 & 26 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence verified.

lence verified.

Now to find the inverse of the matrix A, premultiply the characteristic equation by A^{-1} $\therefore A^2 + A - 19I + 26A^{-1} = 0$

$$\therefore A^{-1} = \frac{1}{26} \left(19I - A - A^2 \right)$$
$$= \frac{1}{26} \left[\begin{pmatrix} 19 & 0 & 0 \\ 0 & 19 & 0 \\ 0 & 0 & 19 \end{pmatrix} - \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{pmatrix} - \begin{pmatrix} 9 & 2 & -7 \\ 5 & 9 & -10 \\ -10 & -7 & 21 \end{pmatrix} \right] = \frac{1}{26} \begin{pmatrix} 9 & -5 & 5 \\ -3 & 9 & 7 \\ 7 & 5 & 1 \end{pmatrix}$$

Problem 3. Given A = $\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$, use Cayley-Hamilton Theorem to find the inverse of A

and also find \boldsymbol{A}^4

Solution:

The characteristic equation of A is

$$\begin{vmatrix} 1-\lambda & 0 & 3\\ 2 & 1-\lambda & -1\\ 1 & -1 & 1-\lambda \end{vmatrix} = 0$$

i.e., $(1-\lambda) [(1-\lambda) (1-\lambda) -1] + 3[-2 - (1-\lambda)] = 0$

i.e.,
$$(1 - \lambda)^3 - (1 - \lambda) - 6 - 3 + 3\lambda = 0$$

i.e., $1 - 3\lambda + 3\lambda^2 - \lambda^3 - 1 + \lambda - 9 + 3\lambda = 0$
i.e., $\lambda^3 + 3\lambda^2 + \lambda - 9 = 0$
By Cayley-Hamilton theorem, $A^3 - 3A^2 - A + 9I = 0$
To find A⁻¹, multiplying by A⁻¹, $A^2 - 3A - 1 + 9A^{-1} = 0$
 $\therefore A^{-1} = \frac{1}{9} [-A^2 + 3A + I]$
 $A^2 = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -3 & 6 \\ 3 & 2 & 4 \\ 0 & -2 & 5 \end{bmatrix}$
 $A^{-1} = \frac{1}{9} \begin{bmatrix} -4 & 3 & -6 \\ -3 & -2 & -4 \\ 0 & 2 & -5 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 9 \\ 6 & 3 & -3 \\ 3 & -3 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $= \frac{1}{9} \begin{bmatrix} 0 & 3 & 3 \\ 3 & 2 & -7 \\ 3 & -1 & -1 \end{bmatrix}$
To find A⁴:
We have $A^3 - 3A^2 - A + 9I = 0$
i.e., $A^3 = 3A^2 + A - 9I$ (1)
Multiplying (1) by A, we get,
 $A^4 = 3A^3 + A^2 - 9A$
 $= 3(3A^2 + A - 9I) + A^2 - 9A$ using (1)
 $= 10A^2 - 6A - 27I$
 $= 10 \begin{bmatrix} 4 & -3 & 6 \\ 3 & 2 & 4 \\ 0 - 2 & 5 \end{bmatrix} - 6 \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} - 27 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 7 & -30 & 42 \\ 18 & -13 & 46 \\ -6 & -14 & 17 \end{bmatrix}$
Problem 4. . If $A = \begin{bmatrix} 0 & 0 & 2 \\ 2 & 1 & 0 \\ -1 & -1 & 3 \end{bmatrix}$ express $A^6 - 25A^2 + 122A$ as a single matrix

Solution: To avoid higher powers of A like A^6 we use Cayley Hamilton Theorem.

Characteristic equation is $\lambda^3 - 4\lambda^2 + 5\lambda + 2 = 0$

By Cayley Hamilton Theorem $A^3 - 4A^2 + 5A + 2I = 0$

To find $A^6 - 25A^2 + 122A$ we will express this in terms of smaller powers of A using the characteristics equation. We know that (Divisor) X (Quotient) + Remainder = Dividend Assuming $A^3 - 4A^2 + 5A + 2I$ as the divisor we get,

$$A^{3} + 4A^{2} + 11A + 22I$$

$$A^{3} - 4A^{2} + 5A + 2I$$

$$A^{6} + 0A^{5} + 0A^{4} - 25A^{2} + 122A + 0I$$

$$A^{6} - 4A^{5} + 5A^{4} + 2A^{3}$$

$$4A^{5} - 5A^{4} - 2A^{3} - 25A^{2} + 122A$$

$$4A^{5} - 16A^{4} + 20A^{3} + 8A^{2}$$

$$11A^{4} - 22A^{3} - 33A^{2} + 122A$$

$$11A^{4} - 44A^{3} + 55A^{2} + 22A$$

$$22A^{3} - 88A^{2} + 100A$$

$$22A^{3} - 88A^{2} + 110A + 44I$$

$$-10A - 44I$$

$$\therefore A^{6} - 25A^{2} + 122A = (A^{3} - 4A^{2} + 5A + 2I)(A^{3} + 4A^{2} + 11A + 22I) + (-10A - 44I)$$

But $A^{3} - 4A^{2} + 5A + 2I = 0$
 $A^{6} - 25A^{2} + 122A = 0 - 10A - 44I$
 $= -(10A + 44I)$
$$= -\left[\begin{pmatrix} 0 & 0 & 20\\ 20 & 10 & 0\\ -10 & -10 & 20 \end{pmatrix} + \begin{pmatrix} 44 & 0 & 0\\ 0 & 44 & 0\\ 0 & 0 & 44 \end{pmatrix} \right]$$

$$= -\left[\begin{pmatrix} 44 & 0 & 20\\ 20 & 54 & 0\\ -10 & -10 & 74 \end{pmatrix}$$

$$= -\left[\begin{pmatrix} -44 & 0 & -20\\ -20 & -54 & 0\\ -10 & 10 & -74 \end{pmatrix}\right]$$

Problem 5. If λi are the eigen values of the matrix A, then prove that i $k\lambda i$ are the eigen values of kA where 'k' is a nonzero scalar.

ii. λ_i^m are the eigen value of A^m and

iii.
$$\frac{1}{\lambda i}$$
 are the eigen values of A^{-1} .

Solution: Let λi be the eigen values of matrix A and Xi be the corresponding eigen vectors. Then by defn: $AXi = \lambda i Xi....(I)$ (i.e by defn. of eigen vectors)

i. Premultiply (I) with the scalar k. Then

- $k(AXi) = k(\lambda i Xi)$
- $i.e.(kA)X_i = (k\lambda i)Xi$

 $\therefore k\lambda i$ are the eigen values of kA (comparing with (I) i.e by defn.)

ii. Premultiply (I) with A, then $A(AXi) = A(\lambda iXi)$ *i.e.* $A^2X^i = \lambda i(AXi)$ $= \lambda i(\lambda_i Xi)$ from (I) $= (\lambda i)^2 Xi$

III^{1y} we can prove that $A^3 Xi = (\lambda_i)^3 Xi$ and so on $A^m Xi = (\lambda i)^m Xi$ $\therefore \lambda i^m$ are the eigen values of the A^m (comparing with (*I*) i.e. by defn.)

iii. Premultiply (I) with
$$A^{-1}$$
, then
 $A^{-1}(AXi) = A^{-1}(\lambda iXi)$
 $i.e.(A^{-1}A)Xi = \lambda i(A^{-1}Xi)$
 $i.e. IXi = \lambda i(A^{-1}Xi)$
 $i.e.A^{-1}Xi = \frac{1}{\lambda i}Xi$
 $\therefore \frac{1}{\lambda i}$ are the eigen values of A^{-1} (comparing with (I)).
 $(2 \quad 0 \quad 1)$

Problem 6. Find the characteristic vectors of $\begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ and verify that they are

mutually orthogonal.

Solution: A =
$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 Characteristic equation is $\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$

Solving: $\lambda = 1, 2, 3$

Consider the matrix equation $(A - \lambda I)X = 0$

Case (i) when
$$\lambda = 1$$
;
 $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} i.e. \quad 0x_1 + 1x_2 + 0x_3 = 0 - (2)$ equation (1) & (3) are identical.
 $1x_1 + 0x_2 + 1x_3 = 0 - (3)$

Solving (1) and (2) using the rule of cross multiplication

$$\frac{x_1}{0-1} = \frac{x_2}{0-1} = \frac{x_3}{0-1} \ i.e. \frac{x_1}{-1} = \frac{x_2}{0} = \frac{x_3}{1} \therefore X_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Case (ii) when $\lambda = 2$;

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} i.e. \quad 0x_1 + 0x_2 + 0x_3 = 0 \qquad i.e. \ x_2 \text{ is arbitrary } say \ k \\ 1x_1 + 0x_2 + 0x_3 = 0 \qquad x_1 = 0 \end{pmatrix}$$

$$\therefore X_2 = \begin{pmatrix} 0 \\ k \\ 0 \end{pmatrix} i.e \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Case (ii) when $\lambda = 3$;
$$\begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} i.e. \quad 0x_1 + 1x_2 + 0x_3 = 0 \\ 1x_1 + 0x_2 + 1x_3 = 0 \end{cases}$$

Solving (1) and (2)
$$\frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1} \therefore X_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Thus the eigen values are 1,2,3 and the correspondent eigen vectors are

$$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}. \text{ To check orthogonallity, } X_1^T X_2 = 0$$
$$X_2^T X_3 = 0$$
$$X_1^T X_3 = 0$$
$$\therefore X_1, X_2, X_3$$
are mutually orthogonal.

Problem 7. Find the latent vectors of $\begin{pmatrix} 6 & -6 & 5 \\ 14 & -13 & 10 \\ 7 & -6 & 4 \end{pmatrix}$

Solution: Characteristic equation is $(\lambda + 1)^3 = 0$: $\lambda = -1, -1, -1$

When $\lambda = -1$ (repeated 3 times) \therefore we have to find 3 corresponding latent vectors.

$$\begin{pmatrix} 7 & -6 & 5 \\ 14 & -12 & 10 \\ 7 & -6 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} i.e. \quad 14x_1 - 12x_2 + 10x_3 = 0$$
All three equation are identical $7x_1 + 6x_2 + 5x_3 = 0$

.i.e. we get only one equation, but we have to find three vectors that are linearly independent.

: Assume
$$x_1 = 0 \Rightarrow -6x_2 + 5x_3 = 0$$
 i.e. $-6x_2 = -5x_3$ i.e. $\frac{x_2}{5} = \frac{x_3}{6}$: $X_1 = \begin{pmatrix} 0 \\ 5 \\ 6 \end{pmatrix}$

Assume
$$x_2 = 0 \Rightarrow -7x_2 + 5x_3 = 0$$
 i.e. $7x_1 = -5x_3i.e.$. $\frac{x_1}{-5} = \frac{x_3}{7}$. $X_2 = \begin{pmatrix} -5 \\ 0 \\ 7 \end{pmatrix}$
And assume $x_2 = 0 \Rightarrow 7x_2 - 6x_3 = 0$ *i.e.* $7x_1 = 6x_2$ 0*i.e.*. $\frac{x_1}{6} = \frac{x_2}{7}$. $X_3 = \begin{pmatrix} 6 \\ 7 \\ 0 \end{pmatrix}$

 X_1 , X_2 and X_3 are linearly independent.

Problem 8. Find the eigen vectors of the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$$

Solution:

The characteristic equation of A is $\begin{bmatrix} 1 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 1 \\ -4 & 4 & 3 - \lambda \end{bmatrix} = 0$

i.e.,
$$(1 - \lambda) [(2 - \lambda) (3 - \lambda) - 4] - 1[0 + 4] + 1[0 + 4(2 - \lambda)] = 0$$

i.e., $(1 - \lambda)(\lambda^2 - 5\lambda + 6 - 4) - 4 + 8 - 4\lambda = 0$
i.e., $(1 - \lambda)(\lambda^2 - 5\lambda + 2) + 4 - 4\lambda = 0$
i.e., $(1 - \lambda)(\lambda^2 - 5\lambda + 2 + 4) = 0$
i.e., $(\lambda - 1)(\lambda^2 - 5\lambda + 6) = 0$
i.e., $(\lambda - 1)(\lambda - 2)(\lambda - 3) = 0$
The eigen values of A are $\lambda = 1, 2, 3$

 \therefore The eigen values of A are $\lambda = 1, 2, 3$.

The eigen vectors are given by
$$\begin{bmatrix} 1-\lambda & 1 & 1\\ 0 & 2-\lambda & 1\\ -4 & 4 & 3-\lambda \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

Case 1
$$\lambda = 1$$

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ -4 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} -4 & 4 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$-4x_1 + 4x_2 + 2x_3 = 0$$

$$x_2 + x_3 = 0$$
A solution is, $x_3 = 2$, $x_2 = -2$, $x_1 = -1$

$$\therefore$$
 Eigen vector $X_1 = \begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix}$

Case 2
$$\lambda = 2$$

$$\begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & 1 \\ -4 & 4 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_1 + x_2 + x_3 = 0$$
A solution is, $x_3 = 0$, $x_2 = 1$, $x_1 = 1$
 \therefore Eigen vector $X_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$
Case 3 $\lambda = 3$

$$\begin{bmatrix} -2 & 1 & 1 \\ 0 & -1 & 1 \\ -4 & 4 & 0 \end{bmatrix} \sim \begin{bmatrix} -2 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ -2x_1 + x_2 + x_3 = 0 \\ -x_2 + x_3 = 0 \end{bmatrix}$$
A solution is, $x_3 = 1$, $x_2 = 1$, $x_1 = 1$
 \therefore Eigen vector $X_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
Problem 9. Diagonalise the matrix $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ using orthogonal transformation.
Solution: Characteristic equation is $\lambda^3 - 10\lambda^2 + 27 - 18 = 0$
Solving we get the eigen value as $\lambda = 1, 3, 6$
When $\lambda = 1, X_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$; When $\lambda = 3, X_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$; When $\lambda = 6, X_3 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$
Normalizing each vector, we get $\begin{pmatrix} -2\sqrt{5} \\ 1\sqrt{5} \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \\ \sqrt{5} \\ 0 \\ 0 \end{bmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ \sqrt{5} \\ 2\sqrt{5} \\ 0 \\ 0 \end{bmatrix}$

$$\therefore \text{ Normalized Modal Matrix, } N = \begin{pmatrix} -2/\sqrt{5} & 0 & 1/\sqrt{5} \\ 1/\sqrt{5} & 0 & 2/\sqrt{5} \\ 0 & 1 & 0 \end{pmatrix}, N' = N^T = \begin{pmatrix} -2/\sqrt{5} & 1/\sqrt{5} & 0 \\ 0 & 0 & 1 \\ 1/\sqrt{5} & 2/\sqrt{5} & 0 \end{pmatrix},$$

Then by the orthogonal transformation,

$$N'AN = \begin{pmatrix} -2/\sqrt{5} & 1/\sqrt{5} & 0\\ 0 & 0 & 1\\ 1/\sqrt{5} & 2/\sqrt{5} & 0 \end{pmatrix} \begin{pmatrix} 2 & 2 & 0\\ 2 & 5 & 0\\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} -2/\sqrt{5} & 0 & 1/\sqrt{5}\\ 0 & 0 & 2/\sqrt{5}\\ 1/\sqrt{5} & 1 & 0 \end{pmatrix}.$$
 On simplifying, we get
$$N'AN = D(\lambda_1, \lambda_2, \lambda_3)$$
$$= D(1, 3, 6) = \begin{pmatrix} 1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 6 \end{pmatrix}$$
 which is diagonal matrix with eigen values along the diagonal (in order).

diagonal (in order).

Problem 10. Reduce $\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ to a diagonal matrix by orthogonal reduction.

Solution: Characteristic equation is $\lambda^3 - 12\lambda^2 + 36\lambda - 32 = 0$. $\lambda = 8, 2, 2$ When $\lambda = 8$

$$\begin{pmatrix}
-2 & -2 \\
-2 & -5 \\
2 & -1 \\
e & -2x_1 + 2x \\
-2x_1 - 5x
\end{pmatrix}$$

i.e

$$-2x_{1} + 2x_{2} + 2x_{3} = 0$$

$$-2x_{1} - 5x_{2} + 1x_{3} = 0$$

$$2x_{1} - 1x_{2} + 5x_{3} = 0$$

Solving any two equations $\frac{x_{1}}{2} = \frac{x_{2}}{-1} = \frac{x_{3}}{1} \therefore X_{1} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$

 $\begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

When $\lambda = 2$ (repeated twice)

$$\begin{pmatrix} 4 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 i.e. $-2x_1 + 2x_2 + 2x_3 = 0$. All the equations are identical.

To get one of the vectors, assume $x_1 = 0 \Rightarrow x_2 - x_3 = 0$ *i.e.* $\frac{x_2}{1} = \frac{x_3}{1}$ \therefore $X_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

 $X_1^T X_2 = 0$. Therefore X_1 and X_2 are orthogonal. Now assume $X_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ to be mutually

orthogonal with X_1 and X_2 .

$$X_{1}^{T}X_{3} = 0 \quad i.e.(2 \quad -1 \quad 1) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \quad i.e.2a - b + c = 0$$

and $X_{2}^{T}X_{3} = 0 \quad i.e.(0 \quad 1 \quad 1) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \quad i.e.0a - b + c = 0$
$$\therefore X_{3} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$$

After normalizing these 3 mutually orthogonal vectors, we get the normalized Modal

Matrix
$$N = \begin{pmatrix} 2/\sqrt{6} & 0 & 1/\sqrt{3} \\ /\sqrt{6} & /\sqrt{3} & 1/\sqrt{3} \\ /\sqrt{6} & /\sqrt{2} & /\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \end{pmatrix}$$

Diagonalizing we get

$$D = N^{T}AN = \begin{pmatrix} 2/\sqrt{6} & -1/\sqrt{6} & 1/\sqrt{6} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{3} & 1/\sqrt{3} & -1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 2/\sqrt{6} & -1/\sqrt{6} & 1/\sqrt{3} \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{3} \end{pmatrix}$$

on simplifying we get $D = D(\lambda_1, \lambda_2, \lambda_3)$

$$\begin{pmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
$$= D(8, 2, 2)$$

Problem 11. Diagonalise the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$

Solution:

The characteristic equation of A is
$$\begin{bmatrix} 3-\lambda & 1 & 1\\ 1 & 3-\lambda & -1\\ 1 & -1 & 3-\lambda \end{bmatrix} = 0$$

i.e.,
$$(\lambda - 1)(\lambda^2 - 8\lambda + 16) = 0$$

 \therefore The eigen values of A are $\lambda = 1, 4, 4$.

	[3-λ	1	1]	$\begin{bmatrix} \mathbf{X}_1 \end{bmatrix}$		0	
The eigen vectors are given by	1	3-λ	-1	X ₂	=	0	
	1	-1	3-λ	$\begin{bmatrix} x_3 \end{bmatrix}$		0	

Case 1 $\lambda = 1$ Eigen vector $X_1 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ Case 2 $\lambda = 4$ Eigen vector $X_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ Now assume $X_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ to be mutually orthogonal with X_1 and X_2 . $X_1^T X_3 = 0$ i.e. -a + b + c = 0and $X_2^T X_3 = 0$ i.e. -b + c = 0} $i.e \frac{a}{2} = \frac{b}{1} = \frac{c}{1}$ $\therefore X_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. Hence the modal matrix $M = \begin{bmatrix} -1 & 0 & 2 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

The Normalized Modal Matrix is
$$N = \begin{pmatrix} -1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \end{pmatrix}$$

Diagonalizing, we get

$$D = N^{T}AN = \begin{pmatrix} -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \\ 2/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{6} \\ \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \\ \end{pmatrix} \begin{pmatrix} -1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ \end{pmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = D(1, 4, 4)$$

Problem 12. Reduce the Quadratic From $10x_1^2 + 2x_2^2 + 5x_3^2 + 6x_2x_3 - 10x_3x_1 - 4x_1x_2$ into canonical form by orthogonal reduction. Hence find the nature, rank, index and the signature of the Q.F. Find also a nonzero set of values of X which will make the Q.F. vanish.

Solution: Matrix of the given Q.F. is $A = \begin{pmatrix} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & -5 \end{pmatrix}$, which is a real and symmetric

matrix. The characteristic equation is $\lambda^3 - 17\lambda^2 + 42\lambda = 0$ Solving, we get $\lambda = 0$, 3, 14

When
$$\lambda = 0, X_1 = \begin{pmatrix} 1 \\ -5 \\ 4 \end{pmatrix}$$
; When $\lambda = 3, X_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$; When $\lambda = 14, X_3 = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}$

and X_1, X_2, X_3 are mutually orthogonal since $X_1^T, X_2 = 0, X_2^T X_3 = 0$ and $X_3^T X_1 = 0$ Normalizing these vectors we get the normalized model matrix

$$N = \begin{pmatrix} 1/\sqrt{42} & 1/\sqrt{3} & -3/\sqrt{14} \\ -5/\sqrt{42} & 1/\sqrt{3} & 1/\sqrt{14} \\ -5/\sqrt{42} & 1/\sqrt{3} & 1/\sqrt{14} \\ 4/\sqrt{42} & 1/\sqrt{3} & 2/\sqrt{14} \end{pmatrix}$$

Diagonalising we get $D = N^T A N$ $= D(\lambda_1\lambda_2, \lambda_3)$ in order = D(0, 3, 14) $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 14 \end{pmatrix}$ (i.e. the eigen values in order along the principal

diagonal).

i.e

Now to reduce the Q.F to C.F (.i.e Canonical form)

Consider the orthogonal transformation X = NY where $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$

Then the Q.F. $X^T A X$ becomes $(NY)^T A (NY) = Y^T (N^T A N) Y$ $=Y^T DY$ since $N^T AN = D$ $= (y_1 y_2 y_3) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 14 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ $=0y_1^2+3y_2^2+14y_3^2$

Thus = $0y_1^2 + 3y_2^2 + 14y_3^2$ is the Canonical form of the given Q.F. And the equations of this transformation are got from X = NY.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = NY = \begin{pmatrix} 1/\sqrt{42} & 1/\sqrt{3} & -3/\sqrt{14} \\ -5/\sqrt{42} & 1/\sqrt{3} & 1/\sqrt{14} \\ -5/\sqrt{42} & 1/\sqrt{3} & 1/\sqrt{14} \\ 4/\sqrt{42} & 1/\sqrt{3} & 2/\sqrt{14} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$\therefore x_1 = \frac{1}{\sqrt{42}} y_1 + \frac{1}{\sqrt{3}} y_2 - \frac{3}{\sqrt{14}} y_3$$
$$x_2 = -\frac{5}{\sqrt{42}} y_1 + \frac{1}{\sqrt{3}} y_2 + \frac{3}{\sqrt{14}} y_3$$
$$x_3 = \frac{4}{\sqrt{42}} y_1 + \frac{1}{\sqrt{3}} y_2 - \frac{3}{\sqrt{14}} y_3$$

To get the non-zero set of values of x which make the Q.F zero we assume values for y_1 , y_2 and y_3 such that the C.F. vanishes.

i.e $0y_1^2 + 3y_2^2 + 14y_3^2$ will vanish if $y_2 = 0, y_3 = 0$ and y_1 is any arbitrary value (for simplicity sake, assume y_1 as the denominator of the coeff. of y_1 in the equations) let $y_1 = \sqrt{42}$

$$\therefore x_1 = \frac{1}{\sqrt{42}} \left(\sqrt{42} \right) + \frac{1}{\sqrt{3}} \left(0 \right) - \frac{3}{\sqrt{14}} \left(0 \right)$$

i.e. $x_1 = 1 + 0 - 0 = 1$
III^{1y} $x_2 = -5 + 0 + 0 = -5$
and $x_3 = 4 + 0 - 0 = 4$

Thus the set of values of x *i.e*(1, -5, 4) will reduce the given Q.F. to zero.

To find the rank, index, signature and nature using canonical form:

C.F. is
$$0y_1^2 + 3y_2^2 + 14y_3^2$$

 \therefore rank is 2 (no. of terms in C.F) Index is 2 (no. of positive terms) Signature of Q.F. = (no. of positive terms) – (no. of negative terms) = 2Nature of the Q.F. is positive semi definite.

Problem 13. Reduce the Q.F. 2xy + 2yz + 2zx into a form of sum of squares. Find the rank, index and signature of it. Find also the nature of the Q.F.

Solution: Matrix of the Q.F. is $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

Characteristic equation is $\lambda^3 - 3\lambda - 2 = 0$ solving $\lambda = 2, -1, -1$

When
$$\lambda = 2, X_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

When $\lambda = -1$ (repeated twice) we get identical equations as $x_1 + x_2 + x_3 = 0$

$$x_1 = 0 \Longrightarrow x_2 + x_3 = 0$$
 i.e. $x_2 = -x_3$ i.e. $\frac{x_2}{-1} = \frac{x_3}{1}$

Assume $\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ which is orthogonal with X_1 .

Now to find X_3 orthogonal with both X_1 and X_2 assume $X_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

if
$$X_2^T X_3 = 0$$
, $a+b+c=0$
if $X_2^T X_3 = 0$, $0a-b+c=0$
i.e. $\frac{a}{2} = \frac{b}{-1} = \frac{c}{-1}$
 $\therefore X_3 = \begin{pmatrix} 2\\ -1\\ -1 \end{pmatrix}$ i.e. $\begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix}$

which is orthogonal with X_1 and X_2 .

Normalising these vectors we get
$$N = \begin{pmatrix} 1/\sqrt{3} & 0/\sqrt{2} & -3/\sqrt{6} \\ 1/\sqrt{3} & 0/\sqrt{2} & 0/\sqrt{6} \\ 1/\sqrt{3} & 0/\sqrt{6} \\ 1/\sqrt{3} & 0/\sqrt{2} & 0/\sqrt{6} \\ 1/\sqrt{3} & 0/\sqrt{6} \\ 1/\sqrt{6} & 0/\sqrt{6}$$

 $= D(\lambda_1, \lambda_2, \lambda_3) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$ Consider the orthonormal transformation X = NY

such that Q.F.is reduced to C.F.

The Q.F. is reduced as

$$X^{T}AX = (NY)^{T} A(NY)$$

 $= Y^{T} (N^{T}AN)Y$
 $= (y_{1}, y_{2}, y_{3},) \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix}$

... The C.F. is $2y_1^2 - y_2^2 - y_3^2$ rank of Q.F. is = no. of terms in C.F=3 index of Q.F. = no. of positive terms in C.F. = 1 signature of Q.F. = (no. of positive terms) – (no. of negative terms) = 1-2 = -1 Nature of the Q.F. is indefinite.

Problem 14. Reduce the quadratic form $8x_1^2 + 7x_2^2 + 3x_3^2 - 12x_1x_2 + 4x_1x_3 - 8x_2x_3$ to the canonical form by an orthogonal transformation. Find also the rank, index, signature and the nature of the quadratic form.

Solution:

The matrix of the quadratic form is $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$

The eigen values of this matrix are 0, 3 and 15 and the corresponding eigen vectors are $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$X_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \qquad X_2 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \qquad X_3 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}, \text{ which are mutually orthogonal.}$$

The normalized modal matrix is N = $\begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$

and $\mathbf{N}^{\mathrm{T}}\mathbf{A}\mathbf{N} = \mathbf{D} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{bmatrix}$

Now the orthogonal transformation X = NY will reduce the given quadratic form to the canonical form $0y_1^2 + 3y_2^2 + 15y_3^2$.

Also rank = 2, index = 2, signature = 2. The quadratic form is positive semi definite.

Problem 15. Find the orthogonal transformation which reduces the quadratic form $2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 + 2x_1x_3$ into the canonical form. Determine the rank, index, signature and the nature of the quadratic form.

Solution:

The matrix of the quadratic form is $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ The characteristic equation of A is $\begin{vmatrix} 2 - \lambda & -1 & 1 \\ -1 & 2 - \lambda & -1 \\ 1 & -1 & 2 - \lambda \end{vmatrix} = 0$ Expanding $\lambda^3 - 6\lambda^2 + 9\lambda - 4 = 0$ $\lambda = 1$ is a root Dividing $\lambda^3 - 6\lambda^2 + 9\lambda - 4$ by $\lambda - 1$, $\underbrace{\begin{vmatrix} 1 & -6 & 9 & -4 \\ 0 & 1 & -5 & 4 \\ 1 & -5 & 4 & | \underline{0} \end{vmatrix}$ The remaining roots are given by $\lambda^2 - 5\lambda + 4 = 0$ $\lambda^2 - 5\lambda + 4 = (\lambda - 1) (\lambda - 4) = 0$ \therefore The eigen values of A are $\lambda = 4, 1, 1$

Case 1 $\lambda = 4$

The eigen vectors are given by $\begin{bmatrix} 2-4 & -1 & 1 \\ -1 & 2-4 & -1 \\ 1 & -1 & 2-4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} -2 & -1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{bmatrix}$ $-3x_2 - 3x_3 = 0$ A solution is $x_3 = 1$, $x_2 = -1$, $x_1 = 1$. \therefore The corresponding eigen vector is $X_1 = \begin{vmatrix} 1 \\ -1 \\ 1 \end{vmatrix}$ Case 2 $\lambda = 1$ The eigen vectors are given by $\begin{bmatrix} 2 - 1 & -1 & 1 \\ -1 & 2 - 1 & -1 \\ 1 & -1 & 2 - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$:. $x_1 - x_2 + x_3 = 0$ Put $x_3 = 0$. We get $x_1 = x_2 = 1$. Let $x_1 = x_2 = 1$ Put $x_3 = 0$. We get $x_1 = x_2 = 1$. Let $x_1 = x_2$ \therefore The eigen vector corresponding to $\lambda = 1$ is $X_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ X_1 and X_2 are orthogonal as $X_1^T X_2 = 1 \cdot 0 + (-1) \cdot 1 + 1 \cdot 1 = 0$. To find another vector $X_3 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ corresponding to $\lambda = 1$ such that it is orthogonal to both X_1 and X_2 and satisfies $x_1 - x_2 + x_3 = 0$ $X_1.X_3 = 0$, $X_2.X_3 = 0$ and a - b + c = 0i.e., 1.a - 1.b + 1.c = 0, 1.a + 1.b + 0.c = 0 and a - b + c = 0. i.e., a-b+c=0 and a+b=0i.e., i.e., a = -b and c = 2bPut b =1, so that a = -1, c = 2

$$\therefore \qquad X_3 = \begin{bmatrix} -1\\ 1\\ 2 \end{bmatrix}$$

The modal matrix is $\begin{bmatrix} 1 & 1 & -1\\ -1 & 1 & 1\\ 1 & 0 & 2 \end{bmatrix}$
Hence the normalized modal matrix is $N = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6}\\ -1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6}\\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{bmatrix}$

 \therefore The required orthogonal transformation is X = NY will reduce the given quadratic form to the canonical form.

C.F=
$$4y_1^2 + y_2^2 + y_3^2$$

Rank of the quadratic form = 3, index = 3, signature = 3. The quadratic form is positive definite.