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Matrices 2

UNIT I MATRICES

Problem 1. Find the eigen values and eigen vectors of the matrix
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Solution:
The characteristic equation is | A - I | = 0.

i.e., 0

-021

6-12

32-2















i.e., (-2 - ) [-(1 - ) -12] - 2[-2 - 6] -3[-4 + 1 - ] = 0
i.e., (-2 - ) [2 -  -12] + 4 + 12 + 9 + 3 = 0

i.e., 3 + 2 - 21 - 45 = 0 (1)
Now, (-3)3 + (-3)2 - 21(-3) - 45 = -27 + 9 + 63 – 45 = 0
 -3 is a root of equation (1).
Dividing 3 + 2 - 21 - 45 by  + 3

01521

45630

4521113







Remaining roots are given by
2 - 2 - 15 = 0

i.e., ( + 3) ( - 5) = 0
i.e.,  = -3, 5.
 The eigen values are -3, -3, 5

The eigen vectors of A are given by
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Case 1  = -3

Now
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Matrices 3

 x1 + 2x2 - 3x3 = 0
Put x2 = k1, x3 = k2

Then x1 = 3k2 - 2k1

 The general eigen vectors corresponding to  = -3 is
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When k1 = 0, k2 = 1, we get the eigen vector
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When k1 = 1, k2 = 0, we get the eigen vector
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Hence the two eigen vectors corresponding to  = -3 are
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These two eigen vectors corresponding to  = -3 are linearly independent.
Case 2  = 5
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 -x1 - 2x2 - 5x3 = 0
-8x2 - 16x3 = 0

A solution is x3 = 1, x2 = -2, x1 = -1

 Eigen vector corresponding to  = 5 is
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Problem 2. Find the characteristic equation of

1 1 2

2 1 3

3 2 3

 
  
  

and verify Cayley-

Hamilton Theorem. Hence find the inverse of the matrix.



Matrices 4

Solution: Let

1 1 2

2 1 3

3 2 3

A

 
   
  

Characteristic eqn. of A is

   3 2 1 1 3 9 9 1 26 0          

i.e 3 2 19 26 0     

By Cayley-Hamilton theorem 3 2 19 26 0A A A I     .

Verification:

2

3 2

1 1 2 1 1 2 9 2 7

. 2 1 3 2 1 3 5 9 10

3 2 3 3 2 3 10 7 21

9 2 7 1 1 2 16 21 45

. 5 9 10 2 1 3 43 16 67

10 7 21 3 2 3 67 45 104

A A A

A A A

      
    

          
           

       
    

           
           

Substituting in the characteristic equation

16 21 45 9 2 7 19 19 38 26 0 0 0 0 0

43 16 67 5 9 10 38 19 57 0 26 0 0 0 0

67 45 104 10 7 21 57 38 57 0 0 26 0 0 0

            
         
                
                     
Hence verified.

Now to find the inverse of the matrix A, premultiply the characteristic equation by 1A

 

2 1

1 2

19 26 0

1
19

26

19 0 0 1 1 2 9 2 7 9 5 5
1 1

0 19 0 2 1 3 5 9 10 3 9 7
26 26

0 0 19 3 2 3 10 7 21 7 5 1

A A I A

A I A A





    

   

           
        

              
                  

Problem 3. Given





















111

112

301

A , use Cayley-Hamilton Theorem to find the inverse of A

and also find A4

Solution:
The characteristic equation of A is

0

λ111

1λ12

30λ1









i.e., (1-) [(1 - ) (1 - ) -1] + 3[-2 - (1 - )] = 0
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i.e., (1 - )3 - (1 - ) – 6 -3 + 3 = 0
i.e., 1 - 3 + 32 - 3 – 1 +  - 9 + 3 = 0

i.e., -3 + 32 +  - 9 = 0
i.e., 3 - 32 -  + 9 = 0

By Cayley-Hamilton theorem, A3-3A2 – A + 9I = 0
To find A-1, multiplying by A-1, A2-3A - I + 9A-1 = 0

 A-1 =
9

1
[-A2 + 3A + I]
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To find A4:
We have A3- 3A2 – A + 9I = 0
i.e., A3 = 3A2 + A - 9I (1)
Multiplying (1) by A, we get,

A4 = 3A3 + A2-9A 
= 3(3A2 + A - 9I) + A2 - 9A using (1)
= 10A2 - 6A - 27I
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Problem 4. . If

0 0 2

2 1 0

1 1 3

A

 
 

  
   

express 6 225 122A A A  as a single matrix

Solution: To avoid higher powers of A like 6A we use Cayley Hamilton Theorem.

Characteristic equation is 3 24 5 2 0     

By Cayley Hamilton Theorem 3 24 5 2 0A A A I   

To find 6 225 122A A A  we will express this in terms of smaller powers of A using the
characteristics equation. We know that (Divisor) X (Quotient) + Remainder = Dividend

Assuming 3 24 5 2A A A I   as the divisor we get,
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3 24 11 22A A A I  

3 24 5 2A A A I  

    6 2 3 2 3 225 122 4 5 2 4 11 22 10 44A A A A A A I A A A I A I            

But 3 24 5 2 0A A A I   

 

6 225 122 0 10 44

10 44

A A A A I

A I

    

  

0 0 20 44 0 0

20 10 0 0 44 0

10 10 20 0 0 44

44 0 20

20 54 0

10 10 74

44 0 20

20 54 0

10 10 74

    
    

      
         

 
 

  
   

  
 

    
   

Problem 5. If i are the eigen values of the matrix A, then prove that
i k i are the eigen values of kA where ‘k’ is a nonzero scalar.

ii. m
i are the eigen value of mA and

iii.
1

i
are the eigen values of 1A .

Solution: Let i be the eigen values of matrix A and Xi be the corresponding eigen
vectors. Then by defn: ......( )AXi iXi I ( i.e by defn. of eigen vectors)

i. Premultiply ( )I with the scalar k. Then

   

   . . i

k AXi k iXi

i e kA X k i Xi









k i are the eigen values of kA (comparing with ( )I i.e by defn.)

6 5 4 2

6 5 4 3

0 0 25 122 0

4 5 2

A A A A A I

A A A A

    

  
5 4 3 2

5 4 3 2

4 5 2 25 122

4 16 20 8

A A A A A

A A A A

   

  
4 3 2

4 3 2

11 22 33 122

11 44 55 22

A A A A

A A A A

  

  
3 2

3 2

22 88 100

22 88 110 44

A A A

A A A I

 

  
10 44A I 
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ii. Premultiply ( )I with A, then

   

 

 

 

2

2

. .

from (I)

i

i

A AXi A iXi

i e A X i AXi

i Xi

i Xi





 











1y we can prove that  
33

iA Xi Xi and so on  
mmA Xi i Xi

mi are the eigen values of the mA (comparing with ( )I i.e. by defn.)

iii. Premultiply ( )I with 1,A then

   

   
 

1 1

1 1

1

1

. .

. .

1
. .

A AXi A iXi

i e A A Xi i A Xi

i e IXi i A Xi

i e A Xi Xi
i









 

 













1

i
 are the eigen values of 1A (comparing with ( )I ).

Problem 6. Find the characteristic vectors of

2 0 1

0 2 0

1 0 2

 
 
 
 
 

and verify that they are

mutually orthogonal.

Solution: A =

2 0 1

0 2 0

1 0 2

 
 
 
 
 

Characteristic equation is 3 26 11 6 0     

Solving: 1,2,3 

Consider the matrix equation   0A I X 

Case (i) when 1; 

 
 
 

1 1 2 3

2 1 2 3

3 1 2 3

1 0 1 0 1 0 1 0 1

0 1 0 0 . . 0 1 0 0 2

1 0 1 0 1 0 1 0 3

x x x x

x i e x x x

x x x x

       
    

        
            

equation (1) & (3) are identical.

Solving (1) and (2) using the rule of cross multiplication

3 31 2 1 2
1

1

. . 0
0 1 0 1 0 1 1 0 1

1

x xx x x x
i e X

 
 

            
 

Case (ii) when 2; 
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1 1 2 3 3

2 1 2 3 2

3 1 2 3 1

1 0 1 0 0 0 1 0 0

0 1 0 0 . . 0 0 0 0 . . is arbitrary

1 0 1 0 1 0 0 0 0

x x x x x

x i e x x x i e x say k

x x x x x

       
    

       
            

2

0 0

. 1

0 0

X k i e

   
   

     
   
   

.

Case (ii) when 3; 

1 1 2 3

2 1 2 3

3 1 2 3

1 0 1 0 0 1 0

0 1 0 0 . . 0 1 0 0

1 0 1 0 1 0 1 0

x x x x

x i e x x x

x x x x

        
    

        
           

Solving (1) and (2)

31 2
3

1

0
1 0 1

1

xx x
X

 
 

     
 
 

Thus the eigen values are 1,2,3 and the correspondent eigen vectors are

1 0

0 , 1

1 0

   
   
   
   
   

and

1

0

1

 
 
 
 
 

. To check orthogonallity, 1 2 0TX X 

2 3

1 3

1 2 3

0

0

, ,

T

T

X X

X X

X X X







are mutually orthogonal.

Problem 7. Find the latent vectors of

6 6 5

14 13 10

7 6 4

 
 

 
  

Solution: Characteristic equation is  
3

1 0 1, 1, 1       

When 1   (repeated 3 times) we have to find 3 corresponding latent vectors.

1 1 2 3

2 1 2 3

3 1 2 3

7 6 5 0 7 6 5 0

14 12 10 0 . . 14 12 10 0

7 6 5 0 7 6 5 0

x x x x

x i e x x x

x x x x

       
    

        
           

All three equation are identical

.i.e. we get only one equation, but we have to find three vectors that are linearly
independent.

Assume 32
1 2 3 2 3 1

0

0 6 5 0 . . 6 5 . . 5
5 6

6

xx
x x x i e x x i e X
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Assume 31
2 2 3 1 3 2

5

0 7 5 0 . . 7 5 . .. 0
5 7

7

xx
x x x i e x x i e X

 
 

             
 

And assume 1 2
2 2 3 1 2 3

6

0 7 6 0 . . 7 6 0 . .. 7
6 7

0

x x
x x x i e x x i e X

 
 

         
 
 

X1, X2 and X3 are linearly independent.

Problem 8. Find the eigen vectors of the matrix
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A

Solution:

The characteristic equation of A is 0

-344

1-20

11-1



















 





i.e., (1 - ) [(2 - ) (3 - ) - 4] -1[0 + 4] +1[0 + 4(2 - )] = 0
i.e., (1 - )(2 - 5 + 6 - 4) – 4 + 8 - 4 = 0

i.e., (1 - )(2 - 5 + 2) + 4 - 4 = 0
i.e., (1 - )(2 - 5 + 2 + 4) = 0

i.e., ( -1)(2 - 5 + 6) = 0
i.e., ( -1)( - 2)( - 3) = 0

 The eigen values of A are  = 1, 2, 3.

The eigen vectors are given by
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x

λ-344

1λ-20

11λ-1
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Case 1  = 1
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~

244

110

110

-4x1 + 4x2 + 2x3 = 0
x2 + x3 = 0

A solution is, x3 = 2, x2 = -2, x1= -1

 Eigen vector X1 =
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2

1
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Case 2  = 2





































000

100

111

~

144

100

111

-x1 + x2 + x3 = 0
x3 = 0

A solution is, x3 = 0, x2 = 1, x1 = 1

 Eigen vector X2 =
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1

1

Case 3  = 3











































000

110

112

~

044

110

112

-2x1 + x2 + x3 = 0
-x2 + x3 = 0

A solution is, x3 = 1, x2 = 1, x1 = 1

 Eigen vector X3 =

















1

1

1

Problem 9. Diagonalise the matrix

2 2 0

2 5 0

0 0 3

 
 
 
 
 

using orthogonal transformation.

Solution: Characteristic equation is 3 210 27 18 0    
Solving we get the eigen value as 1,3,6 

When 1

2

1, 1 ;

0

X

 
 

   
 
 

When 2

0

3, 0 ;

1

X

 
 

   
 
 

When 3

1

6, 2

0

X

 
 

   
 
 

Normalizing each vector, we get

2
5 0

1 , 0
5

1
0

 
   
   
   

     
 

and

1
5

2
5

0
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Normalized Modal Matrix,

2 10
5 5

1 20
5 5

0 1 0

N

 
 
 

  
 
 
 

.

2 1 0
5 5

0 0 1 ,

1 2 0
5 5

TN N

 
 
   
 
  
 

Then by the orthogonal transformation,

2 12 1 00 5 52 2 05 5
20 0 1 2 5 0 0 0

5
1 2 0 0 30 1 1 05 5

5

N AN

                      
  
 

. On simplifying, we get

 

 

1 2 3, ,

1 0 0

1,3,6 0 3 0

0 0 6

N AN D

D

   

 
 

   
 
 

which is diagonal matrix with eigen values along the

diagonal (in order).

Problem 10. Reduce

6 2 2

2 3 1

2 1 3

 
 
  
  

to a diagonal matrix by orthogonal reduction.

Solution: Characteristic equation is 3 212 36 32 0 8, 2, 2        

When 8 

1

2

3

2 2 2 0

2 5 1 0

2 1 5 0

x

x

x

     
    
       
         

i.e 1 2 32 2 2 0x x x   

1 2 32 5 1 0x x x   

1 2 32 1 5 0x x x  

Solving any two equations 31 2
1

2

1
2 1 1

1

xx x
X

 
 

       
 

When 2  (repeated twice)

1

2

3

4 2 2 0

2 1 1 0

2 1 1 0

x

x

x

    
    
      
        

i.e 1 2 32 2 2 0x x x    . All the equations are identical.
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To get one of the vectors, assume 32
1 2 3 2

0

0 0 . . 1
1 1

1

xx
x x x i e X

 
 

        
 
 

1 2 0TX X  . Therefore 1X and 2X are orthogonal. Now assume 3

a

X b

c

 
 

  
 
 

to be mutually

orthogonal with X1 and X2.

 

 

1 3

2 3

0 . . 2 1 1 0 . .2 0

.
2 2 2

0 . . 0 1 1 0 . .0 0

T

T

a

X X i e b i e a b c

c a b c
i e

a

and X X i e b i e a b c

c

 
 

       
    

 
   

         
  

3

1

1

1

X

 
 

   
  

.

After normalizing these 3 mutually orthogonal vectors, we get the normalized Modal

Matrix

2 10
6 3

1 1 1
6 2 3

1 1 1
6 2 3

N

 
 
 
  
 
  
 

Diagonalizing we get

2 1 1 2 1 1
6 6 6 6 6 36 2 2

1 1 1 1 10 2 3 1
2 2 6 2 3

2 1 3
1 1 1 1 1 1

3 3 3 6 3 3

TD N AN

   
               
          

   

on simplifying we get  1 2 3, ,D D   

 

8 0 0

0 2 0

0 0 2

8, 2, 2D
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Problem 11. Diagonalise the matrix

3 1 1

A 1 3 -1

1 -1 3

 
   
  

Solution:

The characteristic equation of A is

3- 1 1

1 3- -1 0

1 -1 3-







 
   
  

i.e., (-1)(2 - 8 + 16) = 0
 The eigen values of A are  = 1, 4, 4.

The eigen vectors are given by
1

2

3

3-λ 1 1 x 0

1 3-λ -1 x 0

1 -1 3-λ x 0

     
          
          

Case 1  = 1

Eigen vector X1 =

1

1

1

 
 
 
  

Case 2  = 4

Eigen vector X2 =

0

1

1

 
  
  

Now assume 3

a

X b

c

 
 

  
 
 

to be mutually orthogonal with X1 and X2.

1 3

2 3

0 . . 0
.

2 1 10 . . 0

T

T

X X i e a b c a b c
i e

and X X i e b c

    
 

    

3

2

1

1

X

 
 

   
 
 

.

Hence the modal matrix

1 0 2

M 1 1 1

1 1 1
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The Normalized Modal Matrix is

1 20
3 6

1 1 1
3 2 6

1 1 1
3 2 6

N

 
 
 

  
 
 
 
 

Diagonalizing, we get

1 1 1 1 20
3 3 3 3 63 1 1

1 1 1 1 10 1 3 1
2 2 3 2 6

1 1 3
2 1 1 1 1 1

6 6 6 3 2 6

TD N AN

   
             
      

   
   

1 0 0

0 4 0

0 0 4

 
   
  

= D(1, 4, 4)

Problem 12. Reduce the Quadratic From 2 2 2
1 2 3 2 3 3 1 1 210 2 5 6 10 4x x x x x x x x x     into

canonical form by orthogonal reduction. Hence find the nature, rank, index and the
signature of the Q.F. Find also a nonzero set of values of X which will make the Q.F.
vanish.

Solution: Matrix of the given Q.F. is

10 2 5

2 2 3

5 3 5

A

  
 

  
   

, which is a real and symmetric

matrix. The characteristic equation is 3 217 42 0    
Solving, we get 0, 3, 14 

When 1

1

0, 5

4

X

 
 

   
 
 

; When 2

1

3, 1 ;

1

X

 
 

   
 
 

When 3

3

14, 1

2

X

 
 

   
 
 

and 1 2 3, ,X X X are mutually orthogonal since 1 2 2 3 3 1, 0, 0 0
T T T

X X X X andX X  

Normalizing these vectors we get the normalized model matrix

31 1
42 3 14

5 1 1
42 3 14

4 1 2
42 3 14

N
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Diagonalising we get TD N AN

 1 2 3,D    in order

 0, 3, 14D

i.e

0 0 0

0 3 0

0 0 14

D

 
 

  
 
 

(i.e. the eigen values in order along the principal

diagonal).
Now to reduce the Q.F to C.F (.i.e Canonical form)

Consider the orthogonal transformation X = NY where

1

2

3

y

Y y

y

 
 

  
 
 

Then the Q.F. TX AX becomes      T T TNY A NY Y N AN Y

= TY DY since TN AN D

 
1

1 2 3 2

3

2 2 2

1 2 3

0 0 0

0 3 0

0 0 14

0 3 14

y

y y y y

y

y y y

  
  

   
  
  

  

Thus =
2 2 2

1 2 30 3 14y y y  is the Canonical form of the given Q.F. And the equations of

this transformation are got from X= NY.

1 1

2 2

3 3

1 1 2 3

2 1 2 3

3 1 2 3

31 1
42 3 14

5 1 1
42 3 14

4 1 2
42 3 14

1 1 3

42 3 14

5 1 3

42 3 14

4 1 3

42 3 14

x y

x NY y

x y

x y y y

x y y y

x y y y

 
              
    

    
 
 

   

   

  

To get the non-zero set of values of x which make the Q.F zero we assume values
for 1 2 3, andy y y such that the C.F. vanishes.



Matrices 16

i.e
2 2 2

1 2 30 3 14y y y  will vanish if 2 3 10, 0andy y y  is any arbitrary value (for

simplicity sake, assume 1y as the denominator of the coeff. of 1y in the equations) let

1 42y 

   1

1

1
2

3

1 1 3
42 0 (0)

42 3 14

. . 1 0 0 1

5 0 0 5

and 4 0 0 4

y

x

i e x

III x

x

   

   

     

   

Thus the set of values of  . 1, 5, 4x i e  will reduce the given Q.F. to zero.

To find the rank, index, signature and nature using canonical form:

C.F. is
2 2 2

1 2 30 3 14y y y 

 rank is 2 (no. of terms in C.F)
Index is 2 (no. of positive terms)
Signature of Q.F. = ( no. of positive terms) – (no. of negative terms) = 2
Nature of the Q.F. is positive semi definite.

Problem 13. Reduce the Q.F. 2 2 2xy yz zx  into a form of sum of squares. Find the

rank, index and signature of it. Find also the nature of the Q.F.

Solution: Matrix of the Q.F. is

0 1 1

1 0 1

1 1 0

A

 
 

  
 
 

Characteristic equation is 3 3 2 0    solving 2, 1, 1   

When 1

1

2, 1

1

X

 
 

   
 
 

When 1   (repeated twice) we get identical equations as 1 2 3 0x x x  

Assume

32
1 2 3 2 3

2

0 0 . . . .
1 1

0

1

1

xx
x x x i e x x i e

X

      


 
 

  
 
 

which is orthogonal with 1.X

Now to find 3X orthogonal with both 1 2andX X assume 3

a

X b

c
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2 3

2 3

3

0, 0

0, 0 0

. .
2 1 1

2 2

1 . . 1

1 1

T

T

if X X a b c

if X X a b c

a b c
i e

X i e

   


    

 
 

   
   

     
      

which is orthogonal with 1 2and .X X

Normalising these vectors we get

0 31
3 2 6

1 1 1 and
3 2 6

1 1 2
3 2 6

N D N AN

 
 
 

   
 
 
 
 

=  1 2 3

2 0 0

, , 0 1 0

0 0 1

D   

 
 

  
  

.Consider the orthonormal transformation X = NY

such that Q.F.is reduced to C.F.

The Q.F. is reduced as

   

 

 
1

1 2 3 2

3

2 0 0

, , , 0 1 0

0 0 1

TT

T T

T

X AX NY A NY

Y N AN Y

Y DY

y

y y y y

y







  
  

   
    

 The C.F. is 2 2 2
1 2 32y y y 

rank of Q.F.is = no. of terms in C.F=3
index of Q.F. = no. of positive terms in C.F. = 1
signature of Q.F. = ( no. of positive terms) – (no. of negative terms)

= 1-2 = -1
Nature of the Q.F. is indefinite.

Problem 14. Reduce the quadratic form 323121
2
3

2
2

2
1 8412378 xxxxxxxxx  to the

canonical form by an orthogonal transformation. Find also the rank, index, signature and
the nature of the quadratic form.
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Solution:

The matrix of the quadratic form is

























342

476

268

A

The eigen values of this matrix are 0, 3 and 15 and the corresponding eigen vectors are



















2

2

1

X1 ,





















2

1

2

X 2 ,



















1

2

2

X3 , which are mutually orthogonal.

The normalized modal matrix is





















1/32/32/3

2/31/32/3

2/32/31/3

N

and NTAN =



















1500

030

000

D

Now the orthogonal transformation X = NY will reduce the given quadratic form to the

canonical form 2
3

2
2

2
1 15y3y0y  .

Also rank = 2, index = 2, signature = 2. The quadratic form is positive semi definite.

Problem 15. Find the orthogonal transformation which reduces the quadratic form

313221
2
3

2
2

2
1 222222 xxxxxxxxx  into the canonical form. Determine the rank, index,

signature and the nature of the quadratic form.

Solution:

The matrix of the quadratic form is

























211

121

112

A

The characteristic equation of A is 0

-21-1

1--21-

11--2









Expanding 3 - 62 + 9 - 4 = 0
 = 1 is a root
Dividing 3 - 62 + 9 - 4 by  -1,

0451

4510

4961







The remaining roots are given by 2-5 + 4 = 0
2 - 5 + 4 = ( - 1) ( - 4) = 0
i.e.,  = 1, 4
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The eigen values of A are  = 4, 1, 1

Case 1  = 4

The eigen vectors are given by



















































0

0

0

x

x

x

4-21-1

1-4-21-

11-4-2

3

2

1







































000

3-3-0

2-1-1

~

211

121

112

 x1 - x2 - 2x3 = 0
-3x2 - 3x3 = 0

A solution is x3 = 1, x2 = -1, x1 = 1.

 The corresponding eigen vector is X1 =



















1

1

1

Case 2  = 1

The eigen vectors are given by



















































0

0

0

1-21-1

1-1-21-

11-1-2

3

2

1

x

x

x















 

















000

000

111

~

11-1

1-11-

11-1

 x1- x2 + x3 = 0
Put x3 = 0. We get x1 = x2 = 1. Let x1 = x2 = 1

 The eigen vector corresponding to  = 1 is X2 =

















0

1

1

X1 and X2 are orthogonal as 1 2
TX X = 10 + (-1) 1 + 11 = 0.

To find another vector X3 =

















c

b

a

corresponding to  =1 such that it is orthogonal to both

X1 and X2 and satisfies x1- x2 + x3 = 0
i.e., X1.X3 = 0, X2.X3 = 0 and a – b + c = 0
i.e., 1.a -1.b + 1.c = 0, 1.a + 1.b + 0.c = 0 and a – b + c = 0.
i.e., a – b + c = 0 and a + b = 0
i.e., a = -b and c = 2b
Put b =1, so that a = -1, c = 2
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2

1

1

X3

The modal matrix is





















201

111

111

Hence the normalized modal matrix is






















63

623

623

/20/1

/1/1/1

/1/1/1

N

 The required orthogonal transformation is X = NY will reduce the given quadratic
form to the canonical form.

C.F= 2
3

2
2

2
14 yyy 

Rank of the quadratic form = 3, index = 3, signature = 3. The quadratic form is positive
definite.


