
Chapter 14

Solved Problems

14.1 Probability review

Problem 14.1. Let X and Y be two N0-valued random variables such that X = Y + Z , where
Z is a Bernoulli random variable with parameter p ∈ (0, 1), independent of Y . Only one of the
following statements is true. Which one?

(a) X + Z and Y + Z are independent

(b) X has to be 2N0 = {0, 2, 4, 6, . . . }-valued

(c) The support of Y is a subset of the support of X

(d) E[(X + Y )Z] = E[(X + Y )]E[Z].

(e) none of the above

Solution: The correct answer is (c).

(a) False. Simply take Y = 0, so that Y + Z = Z and X + Z = 2Z .

(b) False. Take Y = 0.

(c) True. For m in the support of Y (so that P[Y = m] > 0), we have

P[X = m] ≥ P[Y = m,Z = 0] = P[Y = m]P[Z = 0] = P[Y = m](1− p) > 0.

Therefore, m is in the support of X .

(d) False. Take Y = 0.

(e) False.

Problem 14.2. A fair die is tossed and its outcome is denoted by X , i.e.,

X ∼
(

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

)
.
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After that, X independent fair coins are tossed and the number of heads obtained is denoted by
Y .
Compute:

1. P[Y = 4].

2. P[X = 5|Y = 4].

3. E[Y ].

4. E[XY ].

Solution:

1. For k = 1, . . . , 6, conditionally on X = k, Y has the binomial distribution with parameters
k and 1

2 . Therefore,

P[Y = i|X = k] =

{(
k
i

)
2−k, 0 ≤ i ≤ k

0, i > k,

and so, by the law of total probability.

P[Y = 4] =
6∑

k=1

P[Y = 4|X = k]P[X = k]

= 1
6(2−4 +

(
5

4

)
2−5 +

(
6

4

)
2−6)

[
=

29

384

]
.

(14.1)

2. By the (idea behind the) Bayes formula

P[X = 5|Y = 4] =
P[X = 5, Y = 4]

P[Y = 4]
=

P[Y = 4|X = 5]P[X = 5]

P[Y = 4]

=

(
5
4

)
2−5 × 1

6
1
6

(
2−4 +

(
5
4

)
2−5 +

(
6
4

)
2−6
) [

=
10

29

]
.

3. Since E[Y |X = k] = k
2 (the expectation of a binomial with n = k and p = 1

2 ), the law of total
probability implies that

E[Y ] =
6∑

k=1

E[Y |X = k]P[X = k] = 1
6

6∑
k=1

k
2

[
=

7

4

]
.

4. By the same reasoning,

E[XY ] =
6∑

k=1

E[XY |X = k]P[X = k] =
6∑

k=1

E[kY |X = k]P[X = k]

=
6∑

k=1

kE[Y |X = k]P[X = k] = 1
6

6∑
k=1

1
2k

2 [
=

91

12

]
.
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Problem 14.3.

1. An urn contains 1 red ball and 10 blue balls. Other than their color, the balls are indis-
tiguishable, so if one is to draw a ball from the urn without peeking - all the balls will be
equally likely to be selected. If we draw 5 balls from the urn at once and without peeking,
what is the probability that this collection of 5 balls contains the red ball?

2. We roll two fair dice. What is the probability that the sum of the outcomes equals exactly
7?

3. Assume that A and B are disjoint events, i.e., assume that A ∩B = ∅. Moreover, let P[A] =
a > 0 and P[B] = b > 0. Calculate P[A ∪B] and P[A ∩B], using the values a and b:

Solution:

1.

P["the red ball is selected"] =

(
10
4

)(
11
5

) =
5

11
.

2. There are 36 possible outcomes (pairs of numbers) of the above roll. Out of those, the
following have the sum equal to 7 : (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1). Since the dice are
fair, all outcomes are equally likely. So, the probability is

6

36
=

1

6
.

3. According to the axioms of probability:

P[A ∪B] = P[A] + P[B] = a+ b, P[A ∩B] = P[∅] = 0.

Problem 14.4.

1. Consider an experiment which consists of 2 independent coin-tosses. Let the random vari-
able X denote the number of heads appearing. Write down the probability mass function
of X .

2. There are 10 balls in an urn numbered 1 through 10. You randomly select 3 of those balls.
Let the random variable Y denote the maximum of the three numbers on the extracted
balls. Find the probability mass function of Y . You should simplify your answer to a fraction
that does not involve binomial coefficients. Then calculate: P[Y ≥ 7].

3. A fair die is tossed 7 times. We say that a toss is a success if a 5 or 6 appears; otherwise
it’s a failure. What is the distribution of the random variable X representing the number
of successes out of the 7 tosses? What is the probability that there are exactly 3 successes?
What is the probability that there are no successes?

4. The number of misprints per page of text is commonly modeled by a Poisson distribution.
It is given that the parameter of this distribution is λ = 0.6 for a particular book. Find the
probability that there are exactly 2 misprints on a given page in the book. How about the
probability that there are 2 or more misprints?
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Solution:
1.

p0 = P[{(T, T )}] =
1

4
,

p1 = P[{(T,H), (H,T )}] =
1

2
,

p2 = P[{(H,H)}] =
1

4
,

pk = 0, for all other k.

2. The random variable Y can take the values in the set {3, 4, . . . 10}. For any i, the triplet
resulting in Y attaining the value i must consist of the ball numbered i and a pair of balls
with lower numbers. So,

pi = P[Y = i] =

(
i−1
2

)(
10
3

) =
(i−1)(i−2)

2
10·9·8
3·2·1

=
(i− 1)(i− 2)

240
.

Since the balls are numbered 1 through 10, we have

P[Y ≥ 7] = P[Y = 7] + P[Y = 8] + P[Y = 9] + P[Y = 10].

So,

P[Y ≥ 7] =
6 · 5
240

+
7 · 6
240

+
8 · 7
240

+
9 · 8
240

=
1

240
(30 + 42 + 56 + 72)

=
200

240
=

5

6
.

3. X has a binominal distribution with parameters n = 7 and p = 1/3, i.e., X ∼ b(7, 1/3).

P[X = 3] =

(
7

3

)(
1

3

)3(2

3

)4

=
560

2187
,

P[X = 0] =

(
2

3

)7

=
128

2187
.

4. Let X denote the random variable which stands for the number of misprints on a given
page. Then

P[X = 2] =
0.62

2!
e−0.6 ≈ 0.0988,

P[X ≥ 2] = 1− P[X < 2]

= 1− (P[X = 0] + P[X = 1])

= 1−
(

0.60

0!
e−0.6 +

0.61

1!
e−0.6

)
= 1−

(
e−0.6 + 0.6e−0.6

)
= 1− 1.6e−0.6 ≈ 0.122.
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Problem 14.5. Let X and Y be two Bernoulli random variables with the same parameter p = 1
2 .

Can the support of their sum be equal to {0, 1}? How about the case where p is not necesarily
equal to 1

2? Note that no particular dependence structure between X and Y is assumed.

Solution: Let pij , i = 0, 1, j = 0, 1 be defined by

pij = P[X = i, Y = j].

These four numbers effectively specify the full dependence structure of X and Y (in other words,
they completely determine the distribution of the random vector (X,Y )). Since we are requiring
that both X and Y be Bernoulli with parameter p, we must have

p = P[X = 1] = P[X = 1, Y = 0] + P[X = 1, Y = 1] = p10 + p11. (14.2)

Similarly, we must have

1− p = p00 + p01, (14.3)
p = p01 + p11, (14.4)

1− p = p00 + p10 (14.5)

Suppose now that the support of X + Y equals to {0, 1}. Then p00 > 0 and p01 + p10 > 0, but
p11 = 0 (why?). Then, the relation (14.2) implies that p10 = p. Similarly, p01 = p by relation (14.4).
Relations (14.3) and (14.5) tell us that p00 = 1 − 2p. When p = 1

2 , this implies that p00 = 0 - a
contradiction with the fact that 0 ∈ X+Y .

When p < 1
2 , there is still hope. We construct X and Y as follows: let X be a Bernoulli

random variable with parameter p. Then, we define Y depending on the value of X . If X = 1,
we set Y = 0. If X = 0, we set Y = 0 with probabilty 1−2p

1−p and 1 with probability p
1−p . How do

we know that Y is Bernoulli with probability p? We use the law of total probability:

P[Y = 0] = P[Y = 0|X = 0]P[X = 0] + P[Y = 0|X = 1]P[X = 1] = 1−2p
1−p (1− p) + p = 1− p.

Similarly,

P[Y = 1] = P[Y = 1|X = 0]P[X = 0] + P[Y = 1|X = 1]P[X = 1] = (1− 1−2p
1−p )(1− p) = p.

14.2 Random Walks

Problem 14.6. Let {Xn}n∈N0 be a symmetric simple random walk. For n ∈ N the average of
the random walk on the interval [0, n] is defined by

An = 1
n

n∑
k=1

Xk.

1. Is {An}n∈N0 a simple random walk (not necessarily symmetric)? Explain carefully using
the definition.

2. Compute the covariance Cov(Xk, Xl) = E[(Xk − E[Xk])(Xl − E[Xl])], for k ≤ l ∈ N
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3. Compute the variance of An, for n ∈ N.

(Note: You may need to use the following identities:
n∑
k=1

k =
n(n+ 1)

2
and

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
, for n ∈ N.)

Solution:

1. No it is not. The distribution of A2 is− 3
2 − 1

2
1
2

3
2

1
4

1
4

1
4

1
4


In particular, its support is {−3

2 ,−
1
2 ,

1
2 ,

3
2}. For n = 1, A1 = X1, which has the support

{−1, 1}. Therefore, the support of the difference A2 − A1 cannot be {−1, 1} (indeed, the
difference must be “able” to take fractional values). This is in contradiction with the defini-
tion of the random walk which states that all increments must have distributions supported
by {−1, 1}.

2. We write Xk =
∑k

i=1 ξi, and Xl =
∑l

j=1 ξj , where {ξn}n∈N are the (iid) increments of
{Xn}n∈N0 . Since E[Xk] = E[Xl] = 0, we have

Cov(Xk, Xl) = E[XkXl] = E

( k∑
i=1

ξi

) l∑
j=1

ξj


When the sum above is expanded, the terms of the form E[ξiξj ], for i 6= j will disappear
because ξi and ξj are independent for i 6= j . The only terms left are those of the form
E[ξiξi]. Their value is 1, and there are k of them (remember k ≤ l). Therefore,

Cov(Xk, Xl) = k.

3. Let Bn =
∑n

k=1Xk = nAn. We know that E[An] = 0, and that Var[An] = 1
n2 Var[Bn], so it

suffices to compute

Var[Bn] = E[B2
n] = E

[(
n∑
k=1

Xk

)(
n∑
l=1

Xl

)]

We expand the sum on the right and group together equal (k = l) and different indices
(k 6= l) to get

Var[Bn] =

n∑
k=1

Var[Xk] + 2
∑

1≤k<l≤n
Cov(Xk, Xl) =

n∑
k=1

k + 2
∑

1≤k<l≤n
k.
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For each k = 1, 2, . . . , n, there are exactly n− k values of l such that k < l ≤ n. Therefore,∑
1≤k<l≤n k =

∑n
k=1 k(n− k), and so

Var[Bn] =

n∑
k=1

k + 2

n∑
k=1

k(n− k) = (2n+ 1)

n∑
k=1

k − 2

n∑
k=1

k2

= (2n+ 1)
n(n+ 1)

2
− 2

n(n+ 1)(2n+ 1)

6
=
n(n+ 1)(2n+ 1)

6
.

Therefore,
Var[An] =

(n+ 1)(2n+ 1)

6n
.

Another way to approach this computation uses the representation Xk =
∑k

i=1 ξk , so

Var[Bn] = E

( n∑
k=1

Xk

)2
 = E

( n∑
k=1

k∑
i=1

ξi

)2


= E

( n∑
i=1

n∑
k=i

ξi

)2
 = E

( n∑
i=1

(n− i+ 1)ξi

)2


=
n∑
i=1

(n− i+ 1)2 =
n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

where we use the fact that E[ξiξj ] = 0 for i 6= j .

Problem 14.7. Let {Xn}n∈N0 be a simple random walk. The area An under the random walk
on the interval [0, n] is defined by

An =
n−1∑
k=1

Xk + 1
2Xn.

(Note: Draw a picture of a path of a random walk and convince yourself that the expression
above is really the area under the graph.)

Compute the expectation and variance of An.

Problem 14.8. Let {Xn}n∈N0 be a simple symmetric random walk (X0 = 0, p = q = 1
2 ). What

is the probability that Xn will visit all the points in the set {1, 2, 3, 4} at least once during the
time-interval n ∈ {0, . . . , 10}? (Note: write your answer as a sum of binomial coefficients; you
don’t have to evaluate it any further.)

Solution: The random walk will visit all the points in {1, 2, 3, 4} if and only if its maximum
M10 during {0, . . . , 10} is at least equal to 4. Since we start at X0 = 0, visiting all of {1, 2, 3, 4} at
least once is the same as visiting 4 at least once. Therefore, the required probability is P[M10 ≥ 4].
We know (from the lecture notes) that

P[Mn = l] = P[Xn = l] + P[Xn = l + 1].
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Therefore,

P[M10 ≥ 4] =

10∑
l=4

(
P[X10 = l] + P[X10 = l + 1]

)
= P[X10 = 4] + 2P[X10 = 6] + 2P[X10 = 8] + 2P[X10 = 10]

= 2−10
((

10

7

)
+ 2

(
10

8

)
+ 2

(
10

9

)
+ 2

)
.

Problem 14.9. Let {Xn}n∈N0 be a simple symmetric random walk (X0 = 0, p = q = 1
2 ). What is

the probability that Xn will not visit the point 5 during the time-interval n ∈ {0, . . . , 10}?

Solution: The random walk will not visit the point 5 if only if its maximumM10 during {0, . . . , 10}
is at most equal to 4. Therefore, the required probability is P[M10 ≤ 4]. We know (from the lecture
notes) that

P[Mn = l] = P[Xn = l] + P[Xn = l + 1].

Therefore,

P[M10 ≤ 4] =

4∑
l=0

(
P[X10 = l] + P[X10 = l + 1]

)
= P[X10 = 0] + 2P[X10 = 2] + 2P[X10 = 4]

= 2−10
((

10

5

)
+ 2

(
10

6

)
+ 2

(
10

7

))
.

Problem 14.10. A fair coin is tossed repeatedly and the record of the outcomes is kept. Tossing
stops the moment the total number of heads obtained so far exceeds the total number of tails
by 3. For example, a possible sequence of tosses could look like HHTTTHTHHTHH. What is the
probability that the length of such a sequence is at most 10?

Solution: Let Xn, n ∈ N0 be the number of heads minus the number of tails obtained so
far. Then, {Xn}n∈N0 is a simple symmetric random walk, and we stop tossing the coin when X
hits 3 for the first time. This will happen during the first 10 tosses, if and only if M10 ≥ 3, where
Mn denotes the (running) maximum of X . According to the reflection principle,

P[M10 ≥ 3] = P[X10 ≥ 3] + P[X10 ≥ 4] = 2(P[X10 = 4] + P[X10 = 6] + P[X10 = 8] + P[X10 = 10])

= 2−9
[(

10

3

)
+

(
10

2

)
+

(
10

1

)
+

(
10

0

)] [
=

11

32

]
.

14.3 Generating functions

Problem 14.11. If P (s) is the generating function of the random variable X , then the generating
function of 2X + 1 is
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(a) P (2s+ 1)

(b) 2P (s) + 1

(c) P (s2 + 1)

(d) sP (s2)

(e) none of the above

Solution: The correct answer is (d): using the representation PY (s) = E[sY ], we get P2X+1 =
E[s2X+1] = E[s(s2X)] = sE[(s2)X ] = sPX(s2). Alternatively, we can use the fact that

P[2X + 1 = k] =

0, k ∈ {0, 2, 4, . . . },
pk−1

2
, k ∈ {1, 3, 5, . . . },

where pn = P[X = n], n ∈ N0, so that

P2X+1(s) = 0 + p0s+ 0s2 + p1s
2 + 0s3 + p2s

4 + · · · = sPX(s2).

Problem 14.12. Let P (s) be the generating function of the sequence (p0, p1, . . . ) and Q(s) the
generating function of the sequence (q0, q1, . . . ). If the sequence {rn}n∈N0 is defined by

rn =

{
0, n ≤ 1∑n−1

k=1 pkqn−1−k, n > 1,

then its generating function is given by (Note: Careful! {rn}n∈N0 is not exactly the convolution
of {pn}n∈N0 and {qn}n∈N0 . )

(a) P (s)Q(s)− p0q0

(b) (P (s)− p0)(Q(s)− q0)

(c) 1
s (P (s)− p0)Q(s)

(d) 1
sP (s)(Q(s)− q0)

(e) 1
s2

(P (s)− p0)(Q(s)− q0)

Solution: The correct answer is (c). Let R(s) be the generating function of the sequence
{rn}n∈N0 and let r̂ be the convolution r̂n =

∑n
k=0 pkqn−k of the sequences {pn}n∈N0 and {qn}n∈N0 ,

so that the generating function of r̂ is P (s)Q(s). For n > 1,

r̂n−1 =

n−1∑
k=0

pkqn−1−k = rn + p0qn−1.
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Therefore, for s ∈ (0, 1),

P (s)Q(s) =
∞∑
n=0

r̂ns
n = r̂0 +

∞∑
n=1

r̂ns
n

= p0q0 +

∞∑
n=1

(rn+1 + p0qn)sn

= p0q0 + 1
s (R(s)− r1s− r0) + p0

∞∑
n=1

qns
n

= p0Q(s) + 1
sR(s).

Therefore, R(s) = P (s)−p0
s Q(s).

Problem 14.13.
A fair coin and a fair 6-sided die are thrown repeatedly until the the first time 6 appears on the
die. Let X be the number of heads obtained (we are including the heads that may have occurred
together with the first 6) in the count. The generating function of X is

(a) 1
2

s
6−5s + 1

2

(b) s
6−5s

(c) 1+s
7−5s

(d) 1+2s
7−4s

(e) None of the above

Solution: X can be seen as a random sum of 1
2 -Bernoulli random variables with the number of

summands given byG, the number of tries it takes to get the first heads. G is clearly geometrically
distributed with parameter 1

6 . The generating function of G is PG(s) = s
6−5s , so the generating

function of the whole random sum X is

PX(s) = PG((12 + 1
2s)) =

1 + s

7− 5s
.

Problem 14.14. The generating function of the N0-valued random variable X is given by

PX(s) =
s

1 +
√

1− s2
.

1. Compute p0 = P[X = 0].

2. Compute p1 = P[X = 1].

3. Does E[X] exist? If so, find its value; if not, explain why not.

Solution:

1. p0 = PX(0), so p0 = 0,
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2. p1 = P ′X(0), and
P ′X(s) =

1√
1− s2(1 +

√
1− s2)

,

so p1 = 1
2 .

3. If E[X] existed, it would be equal to P ′X(1). However,

lim
s↗1

P ′X(s) = +∞,

so E[X] (and, equivalently, P ′X(1)) does not exist.

Problem 14.15. Let N be a random time, independent of {ξn}n∈N, where {ξn}n∈N is a sequence
of mutually independent Bernoulli ({0, 1}-valued) random variables with parameter pB ∈ (0, 1).
Suppose that N has a geometric distribution g(pg) with parameter pg ∈ (0, 1). Compute the
distribution of the random sum

Y =

N∑
k=1

ξk.

(Note: You can think of Y as a binomial random variable with “random n”.)

Solution: Independence between N and {ξn}n∈N allows us to use the fact that the generating
function PY (s) of Y is given by

PY (s) = PN (PB(s)),

where PN (s) =
pg

1−qgs is the generating function of N (geometric distribution) and PB(s) =

qB + pBs is the generating function of each ξk (Bernoulli distribution). Therefore,

PY (s) =
pg

1− qg(qb + pBs)
=

pg
1−qgqB

1− qgpB
1−qgqB s

=
pY

1− qY s
, where pY =

pg
1− qgqB

and qY = 1− pY .

PY can be recognized as the generating function of a geometric random variable with parameter
pY .

Problem 14.16. Six fair gold coins are tossed, and the total number of tails is recorded; let’s
call this number N . Then, a set of three fair silver coins is tossed N times. Let X be the total
number of times at least two heads are observed (among the N tosses of the set of silver coins).

(Note: A typical outcome of such a procedure would be the following: out of the six gold coins
4 were tails and 2 were heads. Therefore N = 4 and the 4 tosses of the set of three silver coins
may look something like {HHT, THT, TTT,HTH}, so that X = 2 in this state of the world. )

Find the generating function and the pmf of X . You don’t have to evaluate binomial coeffi-
cients.

Solution: Let Hk , k ∈ N, be the number of heads on the kth toss of the set of three silver
coins. The distribution of Hk is binomial so P[Hk ≥ 2] = P[Hk = 2]+P[Hk = 3] = 3/8+1/8 = 1/2.
Let ξk be the indicator

ξk = 1{Hk≥2} =

{
1, Hk ≥ 2,

0, Hk < 2.

Last Updated: December 24, 2010 117 Intro to Stochastic Processes: Lecture Notes



CHAPTER 14. SOLVED PROBLEMS

The generating function Pξ(s) of each ξk is a generating function of a Bernoulli random variable
with p = 1

2 , i.e.
Pξ(s) = 1

2(1 + s).

The random variable N is has a binomial distribution with parameters n = 6 and p = 1
2 . There-

fore,
PN (s) = (12 + 1

2s)
6.

By a theorem from the notes, the generating function of the value of the random sum X is given
by

PX(s) = PN (Pξ(s)) =
(
1
2 + 1

2(12 + 1
2s)
)6

= (34 + 1
4s
)6
.

Therefore, X is a binomial random variable with parameters n = 6 and p = 1/4, i.e.

pk = P[X = k] =

(
6

k

)
36−k

46
, k = 0, . . . , 6.

Problem 14.17. Tony Soprano collects his cut from the local garbage management companies.
During a typical day he can visit a geometrically distributed number of companies with parameter
p = 0.1. According to many years’ worth of statistics gathered by his consigliere Silvio Dante,
the amount he collects from the ith company is random with the following distribution

Xi ∼
(

$1000 $2000 $3000
0.2 0.4 0.4

)
The amounts collected from different companies are independent of each other, and of the
number of companies visited.

1. Find the (generating function of) the distribution of the amount of money S that Tony will
collect on a given day.

2. Compute E[S] and P[S > 0].
Solution:

1. The number N of companies visited has the generating function

PN (s) =
0.1

1− 0.9s
,

and the generting function of the amount Xi collected from each one

PX(s) = 0.2s1000 + 0.4s2000 + 0.4s3000.

The total amount collected is given by the random sum

S =
N∑
i=1

Xi,

so the generating function of S is given by

PS(s) = PN (PX(s)) =
0.1

1− 0.9(0.2s1000 + 0.4s2000 + 0.4s3000)
.
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2. The expectation of S is given by

E[S] = P ′S(1) = P ′N (PX(1))P ′X(1) = E[N ]E[X1] = 9× $2200 = $19800.

To compute P[S > 0], we note that S = 0 if and only if no collections have been made, i.e.,
if the value of N is equal to 0. Since N is geometric with parameter p = 0.1, so

P[S > 0] = 1− P[S = 0] = 1− P[N = 0] = 1− p = 0.9.

Problem 14.18. Let X be an N0-valued random variable, and let P (s) be its generating function.
Then the generating function of 4X is given by

1. (P (s))4,

2. P (P (P (P (s)))),

3. P (s4),

4. 4P (s),

5. none of the above.

Solution: (3)

Problem 14.19. Let X and Y be two N0-valued random variables, let PX(s) and PY (s) be their
generating functions and let Z = X − Y , V = X + Y , W = XY . Then

1. PX(s) = PZ(s)PY (s),

2. PX(s)PY (s) = PZ(s),

3. PW (s) = PX(PY (s)),

4. PZ(s)PV (s) = PX(s)PY (s),

5. none of the above.

Solution: (5)

Problem 14.20. Let X be an N0-valued random variable, and let P (s) be its generating function,
and let Q(s) = P (s)/(1− s). Then

1. Q(s) is a generating function of a random variable,

2. Q(s) is a generating function of a non-decreasing sequence of non-negative numbers,

3. Q(s) is a concave function on (0, 1),

4. Q(0) = 1,

5. none of the above.

Solution: (2)
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14.4 Random walks - advanced methods

Problem 14.21. Let {Xn}n∈N0 be a simple random walk with p = P[X1 = 1] ∈ (0, 1). Then

(a) X will visit every position l ∈ {. . . ,−1, 0, 1, 2, . . . } sooner or later, with probability 1

(b) E[X2
n] < E[X2

n+1], for all n ∈ N0.

(c) E[Xn] < E[Xn+1], for all n ∈ N0.

(d) X2n has a binomial distribution.

(e) None of the above.

Solution: The correct answer is (b).

(a) False. When p < 1
2 , the probability of ever hitting the level l = 1 is less than 1.

(b) True. Xn+1 = Xn + ξn+1, so that, by the independence of Xn and ξn+1, we have

E[X2
n+1] = E[X2

n] + 2E[Xn]E[ξn+1] + E[ξ2n+1] > E[X2
n],

because E[Xn]E[ξ] = n(2p− 1)× (2p− 1) ≥ 0 and E[ξ2] = 1 > 0.

(c) False. E[Xn+1]− E[Xn] = 2p− 1, which could be negative if p < 1
2 .

(d) False. The support of X2n is {−2n,−2n+2, . . . , 2n−2, 2n}, while the support of any binomial
distribution has the form {0, 1, . . . , N}, for some N ∈ N.

(e) False.

Problem 14.22. Throughout the problem, we let τk be the first hitting time of the level k, for
k ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . . } for a simple random walk {Xn}n∈N0 with p = P[X1 = 1] ∈ (0, 1).
Furthermore, let Pk be the generating function of the distribution of τk .

1. When p = 1
2 , we have

(a) P[τ1 <∞] = 1, E[τ1] <∞,
(b) P[τ1 <∞] = 0, E[τ1] <∞,
(c) P[τ1 <∞] = 1, E[τ1] =∞,
(d) P[τ1 <∞] ∈ (0, 1), E[τ1] =∞,
(e) none of the above.

2. Either one of the following 4 random times is not a stopping time for a simple random
walk {Xn}n∈N0 , or they all are. Choose the one which is not in the first case, or choose (e)
if you think they all are.

(a) the first hitting time of the level 4,
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(b) the first time n such that Xn −Xn−1 6= X1,
(c) the first time the walk hits the level 2 or the first time the walk sinks below −5,

whatever happens first,
(d) the second time the walk crosses the level 5 or the third time the walk crosses the

level −2, whatever happens last,
(e) none of the above.

3. We know that P1 (the generating function of the distribution of the first hitting time of level
1) satisfies the following equation

P1(s) = ps+ qsP1(s)
2.

The generating function P−1 of the first hitting time τ−1 of the level −1 then satisfies

(a) P−1(s) = ps+ qsP−1(s)
2,

(b) P−1(s) = qs+ psP−1(s)
2,

(c) P−1(s) = ps− qsP−1(s)2,
(d) P−1(s) = ps+ qsP−1(s)

−2,
(e) none of the above.

4. Let P2 be the generating function of the first hitting time of the level 2. Then

(a) P2(s) = ps+ qsP2(s)
4,

(b) P2(s) = ps2 + qsP2(s),
(c) P2(s) = P1(s),
(d) P2(s) = P1(s)

2,
(e) none of the above.

Solution:

1. The correct answer is (c); see table at the very end of Lecture 7.

2. The correct answer is (e); first, second, or . . . hitting times are stopping times, and so are
their minima or maxima. Note that for two stopping times T1 and T2, the one that happens
first is min(T1, T2) and the one that happens last is max(T1, T2).

3. The correct answer is (b); hitting −1 is the same as hitting 1, if you switch the roles of p
and q.

4. The correct answer is (d); to hit 2, you must first hit 1 and then hit 2, starting from 1. The
times between these two are independent, and distributed like τ1.
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14.5 Branching processes

Problem 14.23. Let {Zn}n∈N0 be a simple branching process
which starts from one individual. Each individual has exactly
three children, each of whom survives until reproductive age
with probability 0 < p < 1, and dies before he/she is able to
reproduce with probability q = 1 − p, independently of his/her
siblings. The children that reach reproductive age reproduce
according to the same rule.

1. Write down the generating function for the offspring dis-
tribution.

2. For what values of p will the population go extinct with
probability 1.
(Hint: You don’t need to compute much. Just find the deriva-
tive P ′(1) and remember the picture from class →)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Solution:

1. The number of children who reach reproductive age is binomially distributed with param-
eters 3 and p. Therefore, P (s) = (ps+ q)3.

2. We know that the extinction happens with probability 1 if and only if the graphs of functions
s and P (s) meet only at s = 1, for s ∈ [0, 1]. They will meet once again somewhere on
[0, 1] if and only if P ′(1) > 1. Therefore, the extinction happens with certainty if P ′(1) =
3p(p 1 + q) = 3p ≤ 1, i.e., if p ≤ 1/3.

Problem 14.24. Let {Zn}n∈N0 be a branching process with offspring distribution (p0, p1, . . . ). We
set P (s) =

∑∞
n=0 pns

n. The extinction is inevitable if

(a) p0 > 0

(b) P (12) > 1
4

(c) P ′(1) < 1

(d) P ′(1) ≥ 1

(e) None of the above

Solution: The correct answer is (c).

(a) False. Take p0 = 1/3, p1 = 0, p2 = 2/3, and pn = 0, n > 2. Then the equation P (s) = s reads
1/3 + 2/3s2 = s, and s = 1/2 is its smallest solution. Therefore, the probability of extinction
is 1/2.

(b) False. Take p0 = 0, p1 = 1/2, p2 = 1/2, and pn = 0, n > 2. Then the equation P (s) = s reads
1/2s+ 1/2s2 = s, and s = 0 is its smallest solution. Therefore, the probability of extinction
is 0, but P (1/2) = 1/4 + 1/8 > 1/4.
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(c) True. The condition P ′(1) < 1, together with the convexity of the function P imply that the
graph of P lies strictly above the 45-degree line for s ∈ (0, 1). Therefore, the only solution
of the equation P (s) = s is s = 1.

(d) False. Take the same example as in (a), so that P ′(1) = 4/3 > 1. On the other hand, the
extinction equation P (s) = s reads 1/3 + 2/3s2 = s. Its smallest solution if s = 1/2.

(e) False.

Problem 14.25. Bacteria reproduce by cell division. In a unit of time, a bacterium will either die
(with probability 1

4 ), stay the same (with probability 1
4 ), or split into 2 parts (with probability 1

2 ).
The population starts with 100 bacteria at time n = 0.

1. Write down the expression for the generating function of the distribution of the size of the
population at time n ∈ N0. (Note: you can use n-fold composition of functions.)

2. Compute the extinction probability for the population.

3. Let mn be the largest possible number of bacteria at time n. Find mn and compute the
probability that there are exactly mn bacteria in the population at time n, n ∈ N0.

4. Given that there are 1000 bacteria in the population at time 50, what is the expected number
of bacteria at time 51?

Solution:

1. The generating function for the offspring distribution is

P (s) = 1
4 + 1

4s+ 1
2s

2.

We can think of the population Zn at time n, as the sum of 100 independent populations,
each one produced by one of 100 bacteria in the initial population. The generating function
for the number of offspring of each bacterium is

P (n)(s) = P (P (. . . P (s) . . . ))︸ ︷︷ ︸
n Ps

Therefore, since sums of independent variables correspond to products in the world of
generating functions, the generating function of Zn is given by

PZn(s) =
[
P (n)(s)

]100
.

2. As in the practice problem, the extinction probability of the entire population (which starts
from 100) is the 100-th power of the extinction probability p of the population which starts
from a single bacterium. To compute p, we write down the extinction equation

s = 1
4 + 1

4s+ 1
2s

2.

Its solutions are s1 = 1 and s2 = 1
2 , so p = s2 = 1

2 . Therefore, the extinction probability for
the entire population is (12)100.
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3. The maximum size of the population at time n will occurr if each of the initial 100 bacteria
splits into 2 each time, so mn = 100 × 2n. For that to happen, there must be 100 splits to
produce the first generation, 200 for the second, 400 for the third, . . . , and 2n−1×100 for the
n-th generation. Each one of those splits happens with probability 1

2 and is independent of
other splits in its generation, given the previous generations. It is clear that for Zn = mn,
we must have Zn−1 = mn−1, . . . , Z1 = m1, so

P[Zn = mn] = P[Zn = mn, Zn−1 = mn−1, . . . Z1 = m1, Z0 = m0]

= P[Zn = mn|Zn−1 = mn−1, Zn−2 = mn−2, . . . ]P[Zn−1 = mn−1, Zn−2 = mn−2, . . . ]

= P[Zn = mn|Zn−1 = mn−1]P[Zn−1 = mn−1|Zn−2 = mn−2, Zn−3 = mn−3, . . . ]P[Zn−2 = mn−2, . . . ]

= . . .

= P[Zn = mn|Zn−1 = mn−1]P[Zn−1 = mn−1|Zn−2 = mn−2] . . .P[Z0 = m0]

= (12)mn−1(12)mn−2 . . . (12)m0

= (12)100(1+2+···+2n−1) = (12)100×(2
n−1)

4. The expected number of offspring of each of the 1000 bacteria is given by P ′(1) = 5
4 .

Therefore, the total expected number of bacteria at time 51 is 1000× 5
4 = 1250.

Problem 14.26. A branching process starts from 10 individuals, and each reproduces according
to the probability distribution (p0, p1, p2, . . . ), where p0 = 1/4, p1 = 1/4, p2 = 1/2, pn = 0, for
n > 2. The extinction probability for the whole population is equal to

(a) 1

(b) 1
2

(c) 1
20

(d) 1
200

(e) 1
1024

Solution: The correct answer is (e). The extinction probability for the population starting from
each of the 10 initial individuals is given by the smallest solution of 1/4+1/4s+1/2s2 = s, which
is s = 1/2. Therefore, the extinction probability for the whole population is (1/2)10 = 1/1024.

Problem 14.27. A (solitaire) game starts with 3 ∈ N silver dollars in the pot. At each turn the
number of silver dollars in the pot is counted (call it K) and the following procedure is repeated
K times: a die is thrown, and according to the outcome the following four things can happen

• If the outcome is 1 or 2 the player takes 1 silver dollar from the pot.

• If the outcome is 3 nothing happens.

• If the outcome is 4 the player puts 1 extra silver dollar in the pot (you can assume that the
player has an unlimited supply of silver dollars).

• If the outcome is 5 or 6, the player puts 2 extra silver dollars in the pot.
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If there are no silver dollars on in the pot, the game stops.
1. Compute the expected number of silver dollars in the pot after turn n ∈ N.

2. Compute the probability that the game will stop eventually.

3. Let mn be the maximal possible number of silver dollars in the pot after the n-th turn?
What is the probability that the actual number of silver dollars in the pot after n turns is
equal to mn − 1?

Solution: The number of silver dollars in the pot follows a branching process {Zn}n∈N0

with Z0 = 3 and offspring distribution whose generating function P (s) is given by

P (s) = 1
3 + 1

6s+ 1
6s

2 + 1
3s

3.

1. The generating function PZn of Zn is (P (P (. . . P (s) . . . )))3, so

E[Zn] = P ′Zn
(1) = 3(P ′(1))n = 3(16 + 21

6 + 31
3)n =

3n+1

2n

2. The probability p that the game will stop is the extinction probability of the process. We
solve the extinction equation P (s) = s to get the extinction probability corresponding to the
case Z0 = 1, where there is 1 silver dollar in the pot:

P (s) = s ⇔ 2 + s+ s2 + 2s3 = 6s ⇔ (s− 1)(s+ 2)(2s− 1) = 0.

The smallest solution in [0, 1] of the equation above is 1/2. To get the true (corresponding
to Z0 = 3) extinction probability we raise it to the third power to get p = 1

8 .

3. The maximal number mn of silver dollars in the pot is achieved if we roll 5 or 6 each time.
In that case, there will be 3 rolls in the first turn, 9 = 32 in the second, 27 = 33 in the third,
etc. That means that after n turns, there will be at most mn = 3n+1 silver dollars in the pot.
In order to have exactly mn− 1 silver dollars in the pot after n turns, we must keep getting
5s and 6s throughout the first n− 2 turns. The probability of that is

(13)3
n−1+3n−2+···+3 = (13)

1
23

n−3
2 .

After that, we must get a 5 or a 6 in 3n − 1 throws and a 4 in a single throw during turn n.
There are 3n possible ways to choose the order of the throw which produces the single 4,
so the later probability is

3n(13)3
n−1(16) = 1

2(13)3
n−n.

We multiply the two probabilities to get

P[Zn = mn − 1] = 1
2(13)

1
23

n+1−n−3
2 .

Problem 14.28. It is a well-known fact(oid) that armadillos always have identical quadruplets (four
offspring). Each of the 4 little armadillos has a 1/3 chance of becoming a doctor, a lawyer or a
scientist, independently of its 3 siblings. A doctor armadillo will reproduce further with probability
2/3, a lawyer with probability 1/2 and a scientist with probability 1/4, again, independently of
everything else. If it reproduces at all, an armadillo reproduces only once in its life, and then
leaves the armadillo scene. (For the purposes of this problem assume that armadillos reproduce
asexually.) Let us call the armadillos who have offspring fertile.
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1. What is the distribution of the number of fertile offspring? Write down its generating
function.

2. What is the generating function for the number of great-grandchildren an armadillo will
have? What is its expectation? (Note: do not expand powers of sums)

3. Let the armadillo population be modeled by a branching process, and let’s suppose that it
starts from exactly one individual at time 0. Is it certain that the population will go extinct
sooner or later?

Solution:

1. Each armadillo is fertile with probability p, where

p = P[ Fertile ] = P[ Fertile | Lawyer ]P[ Lawyer ]

+ P[ Fertile | Doctor ]P[ Doctor ]

+ P[ Fertile | Scientist ]P[ Scientist ] = 1
2 ×

1
3 + 2

3 ×
1
3 + 1

4 ×
1
3 = 5

12 .

Therefore, the number of fertile offspring is binomial with n = 4 and p = 5
12 . The generating

function of this distribution is P (s) = ( 7
12 + 5

12s)
4.

2. To get the number of great-grandchildren, we first compute the generating function Q(s)
of the number of fertile grandchildren. This is simply given by the composition of P with
itself, i.e.,

P (P (s)) = ( 7
12 + 5

12( 7
12 + 5

12s)
4)4.

Finally, the number of great-grandchildren is the number of fertile grandchildren multiplied
by 4. Therefore, its generating function is given by

Q(s) = P (P (s4)) = ( 7
12 + 5

12( 7
12 + 5

12s
4)4)4.

The compute the expectation, we need to evaluate Q′(1):

Q′(s) = (P (P (s4)))′ = P ′(P (s4))P ′(s4)4s3 and P ′(s) = 4 5
12( 7

12 + 5
12s)

3,

so that
Q′(1) = 4P ′(1)P ′(1) = 100

9 .

3. We need to consider the population of fertile armadillos. Its offspring distribution has
generating function P (s) = ( 7

12 + 5
12s)

4, so the population will go extinct with certainty
if and only if the extinction probability is 1, i.e., if s = 1 is the smallest solution of the
extinction equation s = P (s). We know, however, that P ′(1) = 5 × 5

12 = 10
6 > 1, so there

exists a positive solution to P (s) = s which is smaller than 1. Therefore, it is not certain
that the population will become extinct sooner or later.

Problem 14.29. Branching in alternating environments. Suppose that a branching process
{Zn}n∈N0 is constructed in the following way: it starts with one individual. The individuals in odd
generations reproduce according to an offspring distribution with generating function Podd(s)
and those in even generations according to an offspring distribution with generating function
Peven(s). All independence assumptions are the same as in the classical case.
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1. Find an expression for the generating function PZn of Zn.

2. Derive the extinction equation.

Solution:

1. Since n = 0 is an “even” generation, the distribution of the number of offspring of the
initial individual is given by Peven(s). Each of the Z1 individuals in the generation n = 1
reproduce according the generating function Podd, so

PZ2(s) = P∑Z1
k=1 Z2,k

(s) = Peven(Podd(s)).

Similarly, PZ3(s) = Peven(Podd(Peven(s))), and, in general, for n ∈ N0,

PZ2n(s) = Peven(Podd(Peven(. . . Podd(s) . . . )),︸ ︷︷ ︸
2n Ps

, and

PZ2n+1(s) = Peven(Podd(Peven(. . . Peven(s) . . . )),︸ ︷︷ ︸
2n+1 Ps

.
(14.6)

2. To compute the extinction probability, we must evaluate the limit

p = P[E] = lim
n→∞

P[Zn = 0] = lim
n→∞

PZn(0).

Since the limit exists (see the derivation in the classical case in the notes), we know that any
subsequence also converges towards the same limit. In particular, p = limn→∞ x2n, where

xn = P[Zn = 0] = PZn(0).

By the expression for PZn above, we know that x2n+2 = Peven(Podd(x2n)), and so

p = lim
n→∞

x2n+2 = lim
n
Peven(Podd(x2n)) = Peven(Podd(lim

n
x2n)) = Peven(Podd(p)),

which identifies

p = Peven(Podd(p)), (14.7)

as the extinction equation. I will leave it up to you to figure out whether p is characterized
as the smallest positive solution to (14.7).

Problem 14.30. In a branching process, the offspring distribution is given by its characteristic
function

P (s) = as2 + bs+ c

where a, b, c > 0.

(i) Find the extiction probability for this branching process.
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(ii) Give a condition for sure extinction.

Solution:

(i) By Proposition 7.5 in the lecture notes, the extinction probability is the smallest non-negative
solution to

P (x) = x.

So, in this case:
ax2 + bx+ c = x ⇒ ax2 + (b− 1)x+ c = 0.

The possible solutions are

x1,2 =
1

2a

(
− (b− 1)±

√
(b− 1)2 − 4ac

)
.

Recall that it is necessary that P (1) = a+ b+ c = 1. So,

x1,2 =
1

2a

(
− (b− 1)±

√
(1− (a+ c)− 1)2 − 4ac

)
=

1

2a

(
1− b±

√
(a+ c)2 − 4ac

)
=

1

2a

(
1− b±

√
(a− c)2

)
=

1

2a

(
a+ c± |a− c|

)
.

Now, we differentiate two cases:

– If a > c, then

x1,2 =
1

2a

(
a+ c± |a− c|

)
=

1

2a

(
a+ c± (a− c)

)
.

So,

x1 =
1

2a
(a+ c+ a− c) = 1

and

x2 =
1

2a
(a+ c− a+ c) =

c

a
< 1.

The solution we are looking for is c/a.
– If a ≤ c, then

x1,2 =
1

2a

(
a+ c± |a− c|

)
=

1

2a

(
a+ c± (c− a)

)
.

So,

x1 =
1

2a
(a+ c+ c− a) =

c

a
≥ 1

and

x2 =
1

2a
(a+ c− c+ a) =

a

a
= 1.

The solution we are looking for is 1, i.e., in this case there is sure extinction.
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(ii) The discussion above immediately yields the answer to question (ii): the necessary and
sufficient condition for certain extinction is a ≤ c.

Problem 14.31. The purpose of this problem is to describe a class of offspring distributions
(pmfs) for which an expression for PZn(s) can be obtained.

An N0-valued distribution is said to be of fractional-linear type if its generating function P
has the following form

P (s) =
as+ b

1− cs
, (14.8)

for some constants a, b, c ≥ 0. In order for P to be a generating function of a probability
distribution we must have P (1) = 1, i.e. a + b + c = 1, which will be assumed throughout the
problem.

1. What (familiar) distributions correspond to the following special cases (in each case identify
the distribution and its parameters):

(a) c = 0

(b) a = 0

2. Let A be the following 2× 2 matrix

A =

[
a b
−c 1

]
and let An =

[
a(n) b(n)

c(n) d(n)

]
be its nth power (using matrix multiplication, of course). Using mathematical induction
prove that

P (P (. . . P (s) . . . )︸ ︷︷ ︸
n Ps

=
a(n)s+ b(n)

c(n)s+ d(n)
. (14.9)

3. Take a = 0 and b = c = 1/2. Show inductively that

An =
1

2n

[
−(n− 1) n
−n n+ 1

]
. (14.10)

Use that to write down the generating function of Zn in the linear-fractional form (14.8).

4. Find the extinction probability as a function of a, b and c in the general case (don’t forget
to use the identity a+ b+ c = 1!).

Solution: Note: It seems that not everybody is familiar with the principle of mathematical
induction. It is a logical device you can use if you have a conjecture and want to prove that it is
true for all n ∈ N. Your conjecture will be typically look like

For each n ∈ N, the statement P (n) holds.
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where P (n) is some assertion which depends on n (For example, P (n) could be

“ 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
” (14.11)

The principle of mathematical induction says that you can prove that your statement is true for
all n ∈ N by doing the following two things:

1. Prove the statement for n = 1, i.e., prove P (1). (induction basis)

2. Prove that the implication P (n)⇒ P (n+ 1) always holds, i.e., prove the statement for n+ 1
if you are, additionally, allowed to use the statement for n as a hypothesis. (inductive step)

As an example, let us prove the statement (14.11) above. For n = 1, P (1) reads “ 1 = 1 ”, which is
evidently true. Supposing that P (n) holds, i.e., that

1 + 2 + · · ·+ n =
n(n+ 1)

2
,

we can add n+ 1 to both sides to get

1+2+· · ·+n+(n+1) =
n(n+ 1)

2
+(n+1) =

n(n+ 1) + 2(n+ 1)

2
=
n2 + 3n+ 2

2
=

(n+ 1)(n+ 2)

2
,

which is exactly P (n + 1). Therefore, we managed to prove P (n + 1) using P (n) as a crutch.
The principle of mathematical induction says that this is enough to be able to conclude that P (n)
holds for each n, i.e., that (14.11) is a ture statement for all n ∈ N.

Back to the solution of the problem:

1. (a) When c = 0, P (s) = as+ b - Beronulli distribution with success probability a = 1− b.
(b) For a = 0, P (s) = b

1−cs - Geometric distribution with success probability b = 1− c.

2. For n = 1, a(1) = a, b(1) = b, c(1) = −c and d(1) = 1, so clearly

P (s) =
a(1)s+ b(1)

c(1)s+ d(1)
.

Suppose that the equality (14.9) holds for some n ∈ N. Then[
a(n+1) b(n+1)

c(n+1) d(n+1)

]
= An+1 = AnA =

[
a(n) b(n)

c(n) d(n)

] [
a b
−c 1

]
=

[
a a(n) − c b(n) b a(n) + b(n)

a c(n) − c d(n) b c(n) + d(n)

]
On the other hand, by the inductive assumption,

P (P (. . . P (s) . . . )︸ ︷︷ ︸
n+1 Ps

=
a(n)P (s) + b(n)

c(n)P (s) + d(n)
=
a(n) as+b1−cs + b(n)

c(n) as+b1−cs + d(n)

=
(a a(n) − c b(n))s+ b a(n) + b(n)

(a c(n) − c d(n))s+ b c(n) + d(n)
.

Therefore, (14.9) also holds for n+ 1. By induction, (14.9) holds for all n ∈ N.
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3. Here
A =

[
0 1/2
−1/2 1

]
= 1

2

[
0 1
−1 2

]
= 1

21

[
(1− 1) 1
−1 1 + 1

]
so the statement holds for n = 1 (induction basis). Suppose that (14.10) holds for some n.
Then

An+1 = AnA = 1
2n

[
−(n− 1) n
−n n+ 1

]
1
2

[
0 1
−1 2

]
=

1

2n+1

[
−n −(n− 1) + 2n
−n− 1 −n+ 2(n+ 1)

]
=

1

2n+1

[
−n n+ 1

−(n+ 1) n+ 2

]
which is exactly (14.10) for n+ 1 (inductive step). Thus, (14.10) holds for all n ∈ N. By the
previous part, the generating function of Zn is given by

PZn(s) =
−1

2(n− 1)s+ 1
2n

−1
2ns+ 1

2(n+ 1)
.

We divide the numerator and the denominator by 1
2(n+ 1) to get the above expression into

the form dictated by (14.8):

PZn(s) =
−n−1
n+1s+ n

n+1

1− n
n+1s

.

Note that a = −n−1
n+1 , b = n

n+1 and c = n
n+1 so that a+ b+ c = −n+1+n+n

n+1 = 1, as required.

4. For the extinction probability we need to find the smallest solution of

s =
as+ b

1− cs

in [0, 1]. The equation above transforms into a quadratic equation after we multiply both
sides by 1− cs

s− cs2 = as+ b, i.e., cs2 + (a− 1)s+ b = 0. (14.12)

We know that s = 1 is a solution and that a− 1 = −b− c, so we can factor (14.12) as

cs2 + (a− 1)s+ b = (s− 1)(cs− b).

If c = 0, the only solution is s = 1. If c 6= 0, the solutions are 1 and b
c . Therefore, the

extinction probability P[E] is given by

P[E] =

{
1, c = 0,

min(1, bc), otherwise .
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Problem 14.32. (Too hard to appear on an exam, but see if you can understand its solution.
Don’t worry if you can’t.) For a branching process {Zn}n∈N0 , denote by S the total number of
individuals that ever lived, i.e., set

S =
∞∑
n=0

Zn = 1 +
∞∑
n=1

Zn.

(i) Assume that the offspring distribution has the generating function given by

P (s) = p+ qs.

Find the generating function PS in this case.

(ii) Assume that the offspring distribution has the generating function given by

P (s) = p/(1− qs).

Find PS in this case.

(iii) Find the general expression for E[S] and calculate this expectation in the special cases (i)
and (ii).

Solution: In general, the r.v. S satisfies the relationship

PS(s) = E[s1+
∑∞

n=1 Zn ] =
∞∑
k=0

E[s1+
∑∞

n=1 Zn |Z1 = k]P[Z1 = k]

=
∞∑
k=0

sE[sZ1+
∑∞

n=2 Zn |Z1 = k]P[Z1 = k]

When Z1 = k, the expression Z1 +
∑∞

n=2 Zn counts the total number of individuals in k separate
and independent Branching processes - one for each of k members of the generation at time
k = 1. Since this random variable is the sum of k independent random variables, each of which
has the same distribution as S (why?), we have

E[sZ1+
∑∞

n=2 Zn |Z1 = k] = [PS(s)]k.

Consequently, PS is a solution of the following equation

PS(s) = s
∞∑
k=0

[PS(s)]kP[Z1 = k] = sP (PS(s)).

(i) In this case,

PS(s) = s(p+ qPS(s)) ⇒ PS(s) =
sp

1− sq
.
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(iii) Here, PS(s) must satisfy

PS(s)(1− qPS(s))− sp = 0,

i.e.,

qPS(s)2 − PS(s) + sp = 0.

Solving the quadratic, we get as the only sensible solution (the one that has PS(0) = 0):

PS(s) =
1−
√

1− 4spq

2q
.

Note that PS(1) < 1 if p < q. Does that surprise you? Should not: it is possible that S = +∞.

(iii) Using our main “recursion” for PS(s), we get

P ′S(s) = (sPZ1(PS(s)))′ = PZ1(PS(s)) + sP ′Z1
(P (s))P ′(s).

So, for s = 1,

E[S] = P ′S(1) = PZ1(PS(1)) + P ′Z1
(PS(1))P ′s(1) = 1 + µE[S].

If µ ≥ 1, E[S] = +∞. If µ < 1,

E[S] =
1

1− µ
.

14.6 Markov chains - classification of states

Problem 14.33. Let {Xn}n∈N0 be a simple symmetric random walk, and let {Yn}n∈N0 be a random
process whose value at time n ∈ N0 is equal to the amount of time (number of steps, including
possibly n) the process {Xn}n∈N0 has spent above 0, i.e., in the set {1, 2, . . . }. Then

(a) {Yn}n∈N0 is a Markov process

(b) Yn is a function of Xn for each n ∈ N.

(c) Xn is a function of Yn for each n ∈ N.

(d) Yn is a stopping time for each n ∈ N0.

(e) None of the above

Solution: The correct answer is (e).

Last Updated: December 24, 2010 133 Intro to Stochastic Processes: Lecture Notes



CHAPTER 14. SOLVED PROBLEMS

(a) False. The event {Y3 = 1} corresponds to exactly two possible paths of the random walk -
{X1 = 1, X2 = 0, X3 = −1} and {X1 = −1, X2 = 0, X3 = 1}, each occurring with probability
1
8 . In the first case, there is no way that Y4 = 2, and in the second one, Y4 = 2 if and only
if, additionally, X4 = 2. Therefore,

P[Y4 = 2|Y3 = 1] =
1

P[Y3 = 1]
P[Y4 = 2 and Y3 = 1]

= 4P[X1 = −1, X2 = 0, X3 = 1, X4 = 2] = 1
4 .

(14.13)

On the other hand,

P[Y4 = 2|Y3 = 1, Y2 = 1, Y1 = 1, Y0 = 0] =
P[Y4 = 2 and X1 = 1, X2 = 0, X3 = −1]

P[X1 = 1, X2 = 0, X3 = −1]
= 0.

(b) False. Yn is a function of the entire past X0, X1, . . . , Xn, but not of the individual value Xn.

(c) False. Except in trivial cases, it is impossible to know the value of Xn if you only know how
many of the past n values are positive.

(d) False. The fact that, e.g., Y10 = 1 (meaning that X hits 1 exactly once in its first 10 steps
and immediately returns to 0) cannot possibly be known at time 1.

(e) True.

Problem 14.34. Suppose that all classes of a Markov chain are recurrent, and let i, j be two
states such that i→ j . Then

(a) for each state k, either i→ k or j → k

(b) j → i

(c) pji > 0 or pij > 0

(d)
∑∞

n=1 p
(n)
jj <∞

(e) None of the above

Solution: The correct answer is (b).

(a) False. Take a chain with two states 1, 2 where p11 = p22 = 1, and set i = j = 1, k = 2.

(b) True. Recurrent classes are closed, so i and j belong to the same class. Therefore j → i.

(c) False. Take a chain with 4 states 1, 2, 3, 4 where p12 = p23 = p34 = p41 = 1, and set i = 1,
j = 3.

(d) False. That would mean that j is transient.

(e) False.
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Problem 14.35. Which of the following statements is true? Give a short explanation (or a coun-
terexample where appropriate) for your choice. Here, {Xn}n∈N0 be a Markov chain with state
space Z.

1. {X2
n}n∈N0 must be a Markov chain.

2. {X3
n}n∈N0 does not have to be a Markov chain.

3. There exists a set T and a function f : S → T such that {f(Xn)}n∈N0 is not a Markov
chain.

4. There exists a set T and a function f : S → T which is not a bijection (one-to-one and onto)
such that {f(Xn)}n∈N is a Markov chain,

5. None of the above.

Problem 14.36. Two containers are filled with ping-pong balls. The red container has 100 red
balls, and the blue container has 100 blue balls. In each step a container is selected; red with
probability 1/2 and blue with probability 1/2. Then, a ball is selected from it - all balls in the
container are equally likely to be selected - and placed in the other container. If the selected
container is empty, no ball is transfered.

Once there are 100 blue balls in the red container and 100 red balls in the blue container,
the game stops (and we stay in that state forever).

We decide to model the situation as a Markov chain.

1. What is the state space S we can use? How large is it?

2. What is the initial distribution?

3. What are the transition probabilities between states? Don’t write the matrix, it is way too
large; just write a general expression for pij , i, j ∈ S .

4. How many transient states are there?

Solution: There are many ways in which one can solve this problem. Below is just one of them.

1. In order to describe the situation being modeled, we need to keep track of the number
of balls of each color in each container. Therefore, one possibility is to take the set of
all quadruplets (r, b, R,B), r, b, R, b ∈ {0, 1, 2, . . . , 100} and this state space would have 1014

elements. We know, however, that the total number of red balls, and the total number of
blue balls is always equal to 100, so the knowledge of the composition of the red (say)
container is enough to reconstruct the contents of the blue container. In other words, we
can use the number of balls of each color in the red container only as our state, i.e.

S = {(r, b) : r, b = 0, 1, . . . , 100}.

This state space has 101× 101 = 10201 elements.
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2. The initial distribution of the chain is deterministic: P[X0 = (100, 0)] = 1 and P[X0 = i] = 0,
for i ∈ S \ {(100, 0)}. In the vector notation,

a(0) = (0, 0, . . . , 1, 0, 0, . . . , 0),

where 1 is at the place corresponding to (100, 0).

3. Let us consider several separate cases, under the understandin that pij = 0, for all i, j not
mentioned explicitely below:

(a) One of the containers is empty. In that case, we are either in (0, 0) or in (100, 100).
Let us describe the situation for (0, 0) first. If we choose the red container - and that
happens with probability 1

2 - we stay in (0, 0):

p(0,0),(0,0) = 1
2 .

If the blue container is chosen, a ball of either color will be chosen with probability
100
200 = 1

2 , so
p(0,0),(1,0) = p(0,0),(0,1) = 1

4 .

By the same reasoning,

p(100,100),(0,0) = 1
2 and p(100,100),(99,100) = p(100,100),(100,99) = 1

4 .

(b) We are in the state (0, 100). By the description of the model, this is an absorbing state,
so

p(0,100),(0,100) = 1.

(c) All other states. Suppose we are in the state (r, b) where (r, b) 6∈ {(0, 100), (0, 0), (100, 100)}.
If the red container is chosen, then the probability of getting a red ball is r

r+b , so

p(r,b),(r−1,b) = 1
2

r
r+b .

Similarly,
p(r,b),(r,b−1) = 1

2
b
r+b .

In the blue container there are 100− r red and 100− b blue balls. Thus,

p(r,b),(r+1,b) = 1
2

100−r
200−r−b ,

and
p(r,b),(r,b+1) = 1

2
100−b

200−r−b .

(d) The state (0, 100) is clearly recurrent (it is absorbing). Let us show that all other (10200
of them) are transient. It will be enough to show that i → (0, 100), for each i ∈ S ,
because (0, 100) is in a recurrent class by itself. To do that, we just need to find a path
from any state (r, b) to (0, 100) through the transition graph:

(r, b)→ (r − 1, b)→ · · · → (0, b)→ (0, b+ 1)→ · · · → (0, 100).
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Problem 14.37. Let {Zn}n∈N0 be a Branching process (with state space S = {0, 1, 2, 3, 4, . . . } =
N0) with the offspring probability given by p0 = 1/2, p2 = 1/2. Classify the states (find classes),
and describe all closed sets.

Solution: If i = 0, the i is an absorbing state (and, therefore, a class in itself). For i ∈ N, pij > 0
if j is of the form 2k for some k ≤ i (out of i individuals, i − k die and the remaining k have
two children). In particular, noone ever communicates with odd i ∈ N. Therefore, each odd i is
a class in itself. For even i, it communicates with all even numbers from 0 to 2i; in particular,
i→ i+2 and i→ i−2. Therefore, all positive even numbers intercommunicate and form a class.

Clearly, {0} is a closed set. Every other closed set will contain a positive even number; indeed,
after one step we are in an even state, no matter where be start from, and this even number
could be positive, unless the initial state was 0). Therefore, any closed set different from {0} will
have to contain the set of all even numbers 2N0 = {0, 2, 4, . . . }, and, 2N0 is a closed set itself.
On the other hand, if we add any collection of odd numbers to 2N0, the resulting set will still
be closed (exiting it would mean hitting an odd number outside of it). Therefore, closed sets are
exactly the sets of the form C = {0} or C = 2N0 ∪D, where D is any set of odd numbers.

Problem 14.38. Which of the following statements is true? Give a short explanation (or a
counterexample where appropriate) for your choice. {Xn}n∈N0 is a Markov chain with state
space S .

1. p(n)ij ≥ f
(n)
ij for all i, j ∈ S and all n ∈ N.

2. If states i and j intercommunicate, then there exists n ∈ N such that p(n)ij > 0 and p(n)ji > 0.

3. If all rows of the transition matrix are equal, then all states belong to the same class.

4. If fij < 1 and fji < 1, then i and j do not intercommunicate.

5. If Pn → I , then all states are recurrent. (Note: We say that a sequence {An}n∈N of matrices
converges to the matrix A, and we denote it by An → A, if (An)ij → Aij , as n→∞, for all
i, j .)

Solution:

1. TRUE. p(n)ij is the probability that Xn = j ( given that X0 = i). On the other hand f
(n)
ij is

the probability that Xn = j and that Xk 6= j for all k = 1, . . . , n− 1 (given X0 = i). Clearly,
the second event is a subset of the first, so f (n)ij ≤ p

(n)
ij .

2. FALSE. Consider the following Markov chain

1

1

1

1

23

.
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All states intercommunicate, but p(n)12 > 0 if and only if n is of the form 3k + 1, for k ∈ N0.
On the other hand p(n)21 > 0 if and only if n = 3k + 2 , for some k ∈ N0. Thus, p(n)12 and p(n)21

are never simultaneously positive.

3. FALSE. Consider a Markov chain with the following transition matrix:

P =

[
1 0
1 0

]
.

Then 1 is an absorbing state and it is in a class of its own, so it is not true that all states
belong to the same class.

4. FALSE. Consider the following Markov chain:

1
-

2

1
-

2

1
-

2

1
-

2

1

3

21

.

Then the states 2 and 3 clearly intercommunicate. In the event that (starting from 2), the
first transition happens to be 2 → 1, we are never visiting 3. Otherwise, we visit 3 at time
1. Therefore, f23 = 1/2 < 1. Similarly, f32 = 1/2 < 1.

5. TRUE. Suppose that there exists a transient state i ∈ S . Then
∑

n p
(n)
ii < ∞, and, in

particular, p(n)ii → 0, as n → ∞. This is a contradiction with the assumption that p(n)ii → 1,
for all i ∈ S .
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Problem 14.39. Consider a Markov Chain whose transition graph is given below

0.5

0.5

0.5

0.5

1.

1.

0.5

0.5

1.
0.5

0.5

0.75

0.25

1

2

3

7

4

5

6 8

1. Identify the classes.

2. Find transient and recurrent states.

3. Find periods of all states.

4. Compute f (n)13 , for all n ∈ N.

5. Using Mathematica, we can get that, approximately,

P 20 =



0 0 0.15 0.14 0.07 0.14 0.21 0.29
0 0 0.13 0.15 0.07 0.15 0.21 0.29
0 0 0.3 0.27 0.15 0.28 0 0
0 0 0.27 0.3 0.13 0.29 0 0
0 0 0.29 0.28 0.15 0.28 0 0
0 0 0.28 0.29 0.14 0.29 0 0
0 0 0 0 0 0 0.43 0.57
0 0 0 0 0 0 0.43 0.57


,

where P is the transition matrix of the chain. Compute the probability P[X20 = 3], if the
initial distribution (the distribution of X0) is given by P[X0 = 1] = 1/2 and P[X0 = 3] = 1/2.

Solution:

1. The classes are T1 = {1}, T2 = {2}, C1 = {3, 4, 5, 6} and C2 = {7, 8}

2. The states in T1 and T2 are transient, and the others are recurrent.

3. The periods are all 1.
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4. For n = 1, f (n)13 = 0, since you need at least two steps to go from 1 to 3. For n = 2, the chain
needs to follow 1→ 2→ 3, for f (n)13 = (1/2)2. For n larger than 2, the only possibility is for
the chain to stay in the state 1 for n− 2 periods, jump to 2 and finish at 3, so f (n)13 = (1/2)n

in that case. All together, we have

f
(n)
13 =

{
0, n = 1

(1/2)n, n ≥ 2.

5. We know from the notes that the distribution of X20, when represented as a vector a(20) =

(a
(20)
1 , a

(20)
2 , . . . , a

(20)
8 ) satisfies

a(20) = a(0)P 20.

By the assumption a(0) = (12 , 0,
1
2 , 0, 0, 0, 0, 0), so P[X20 = 3] = a

(20)
3 = 1

20.15 + 1
20.3 = 0.225.

Problem 14.40. A country has m+ 1 cities (m ∈ N), one of which is the capital. There is a direct
railway connection between each city and the capital, but there are no tracks between any two
“non-capital” cities. A traveler starts in the capital and takes a train to a randomly chosen non-
capital city (all cities are equally likely to be chosen), spends a night there and returns the next
morning and immediately boards the train to the next city according to the same rule, spends
the night there, . . . , etc. We assume that his choice of the city is independent of the cities visited
in the past. Let {Xn}n∈N0 be the number of visited non-capital cities up to (and including) day n,
so that X0 = 1, but X1 could be either 1 or 2, etc.

1. Explain why {Xn}n∈N0 is a Markov chain on the appropriate state space S and the find the
transition probabilities of {Xn}n∈N0 , i.e., write an expression for

P[Xn+1 = j|Xn = i], for i, j ∈ S .

2. Find recurrent and transient classes and periods of all states. Sketch the transition graph
for m = 3.

3. Let τm be the first time the traveler has visited all m non-capital cities, i.e.

τm = min{n ∈ N0 : Xn = m}.

What is the distribution of τm, for m = 1 and m = 2.

4. Compute E[τm] for general m ∈ N. (Note: you don’t need to use any heavy machinery. In
particular, no knowledge of the “absorption and reward” techniques are necessary.)

Solution:

1. The natural state space for {Xn}n∈N0 is S = {1, 2, . . . ,m}. It is clear that P[Xn+1 = j|Xn =
i] = 0, unless, i = j or i = j+1. If we start from the state i, the process will remain in i if the
traveler visits one of the already-visited cities, and move to i+1 is the visited city has never
been visited before. Thanks to the uniform distributrion in the choice of the next city, the
probability that a never-visited city will be selected is m−i

m , and it does not depend on the
(names of the) cities already visited, or on the times of their first visits; it only depends on
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their number. Consequently, the extra information about X1, X2, . . . , Xn−1 will not change
the probability of visiting j in any way, which is exactly what the Markov property is all
about. Therefore, {Xn}n∈N is Markov and its transition probabilities are given by

pij = P[Xn+1 = j|Xn = i] =


0, j 6∈ {i, i+ 1}
m−i
m , j = i+ 1
i
m , j = i.

(Note: the situation would not be nearly as nice if the distribution of the choice of the next
city were non-uniform. In that case, the list of the (names of the) already-visited cities would
matter, and it is not clear that the described process has the Markov property (does it?). )

2. Once the chain moves to the next state, it can never go back. Therefore, it cannot happen
that i ↔ j unless i = j , and so, every state is a class of its own. The class {m} is clearly
absorbing and, therefore, recurrent. All the other classes are transient since it is possible
(and, in fact, certain) that the chain will move on to the next state and never come back. As
for periods, all of them are 1, since 1 is in the return set of each state.

0.33 0.67

0.67

0.33 11 2 3

3. For m = 1, τm = 0, so its distribution is deterministic and concentrated on 0. The case
m = 2 is only slightly more complicated. After having visited his first city, the visitor
has a probability of 1

2 of visiting it again, on each consecutive day. After a geometrically
distributed number of days, he will visit another city and τ2 will be realized. Therefore the
distribution {pn}n∈N0 of τ2 is given by

p0 = 0, p1 = 1
2 , p2 = (12)2, p3 = (12)3, . . .

4. For m > 1, we can write τm as

τm = τ1 + (τ2 − τ1) + · · ·+ (τm − τm−1),

so that
E[τm] = E[τ1] + E[τ2 − τ1] + · · ·+ E[τm − τm−1].

We know that τ1 = 0 and for k = 1, 2, . . . ,m−1, the difference τk+1−τk denotes the waiting
time before a never-before-visited city is visited, given that the number of already-visited
cities is k. This random variable is geometric with sucess probability given by m−k

m , so its
expecation is given by

E[τk+1 − τk] =
1

m−k
m

=
m

m− k
.
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Therefore,

E[τm] =

m−1∑
k=1

m

m− k
= m(1 + 1

2 + 1
3 + · · ·+ 1

m−1).

(Note: When m is large, the partial harmonic sum Hm = 1 + 1
2 + · · · + 1

m−1 behaves like
logm, so that, asymptotically, E[τm] behaves like m logm.)

14.7 Markov chains - absorption and reward

Problem 14.41. In a Markov chain with a finite number of states, the fundamental matrix is
given by F =

[
3 4
3
2 4

]
. The initial distribution of the chain is uniform on all transient states. The

expected value of
τC = min{n ∈ N0 : Xn ∈ C},

where C denotes the set of all recurrent states is

(a) 7

(b) 8

(c) 25
4

(d) 9
2

(e) None of the above.

Solution: The correct answer is (c). Using the reward g ≡ 1, the vector v of expected values of
τC , where each entry corresponds to a different transient initial state is

v = Fg =

[
3 4
3
2 4

] [
1
1

]
=

[
7
11
2

]
Finally, the initial distribution puts equal probabilities on the two transient states, so, by the law
of total probability, E[τC ] = 1

2 × 7 + 1
2 ×

11
2 = 25

4 .

Problem 14.42. A fair 6-sided die is rolled repeatedly, and for n ∈ N, the outcome of the n-th
roll is denoted by Yn (it is assumed that {Yn}n∈N are independent of each other). For n ∈ N0, let
Xn be the remainder (taken in the set {0, 1, 2, 3, 4}) left after the sum

∑n
k=1 Yk is divided by 5,

i.e. X0 = 0, and

Xn =

n∑
k=1

Yk ( mod 5 ), for n ∈ N,

making {Xn}n∈N0 a Markov chain on the state space {0, 1, 2, 3, 4} (no need to prove this fact).

1. Write down the transition matrix of the chain.

2. Classify the states, separate recurrent from transient ones, and compute the period of each
state.
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3. Compute the expected number of rolls before the first time {Xn}n∈N0 visits the state 2, i.e.,
compute E[τ2], where

τ2 = min{n ∈ N0 : Xn = 2}.

4. Compute E[
∑τ2

k=0Xk].

(Note: For parts (3) and (4), you can phrase your answer as (B−1C)ij , where the matrices B and
C , as well as the row i and the column j have to be given explicitly. You don’t need to evaluate
B−1. )

Solution:

1. The outcomes 1, 2, 3, 4, 5, 6 leave remainders 1, 2, 3, 4, 0, 1, when divided by 5, so the transi-
tion matrix P of the chain is given by

P =



1
6

1
3

1
6

1
6

1
6

1
6

1
6

1
3

1
6

1
6

1
6

1
6

1
6

1
3

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
6

1
6

1
6

1
6


2. Since pij > 0 for all i, j ∈ S , all the states belong to the same class, and, because there is at

least one recurrent state in a finite-state-space Markov chain and because recurrence is a
class property, all states are recurrent. Finally, 1 is in the return set of every state, so the
period of each state is 1.

3. In order to be able to use “absorption-and-reward” computations, we turn the state 2 into an
absorbing state, i.e., modify the transition matrix as follows

P ′ =



1
6

1
3

1
6

1
6

1
6

1
6

1
6

1
3

1
6

1
6

0 0 1 0 0
1
6

1
6

1
6

1
6

1
3

1
3

1
6

1
6

1
6

1
6


Now, the first hitting time of the state 2 corresponds exactly to the absorption time, i.e., the
time τC the chain hits its first recurrent state (note that for the new transition probabilities
the state 2 is recurrent and all the other states are transient). In the canonical form, the
new transition matrix looks like 

1 0 0 0 0
1
6

1
6

1
3

1
6

1
6

1
3

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
6

1
3

1
6

1
6

1
6


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Therefore,

Q =


1
6

1
3

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
6

1
6

1
6

 , and F = (I −Q)−1 =


5
6 − 1

3 − 1
6 − 1

6

− 1
6

5
6 − 1

6 − 1
6

− 1
6 − 1

6
5
6 − 1

3

− 1
3 − 1

6 − 1
6

5
6



−1

The expected time until absorption is given by an “absorption-and-reward” computation with
the reward matrix

g1 =


1
1
1
1

 ,
so that, since we are starting from the state 0, we get

E[τ2] = (Fg1)1.

4. If the sum went from 0 to τ2−1 (up to, but not including the state where we get absorbed), it
would correspond exactly to an “absorption-and-reward” computation with reward g2 given
by

g2 =


0
1
3
4

 .
Therefore, E[

∑τ2−1
k=0 Xk] = (Fg2)1. To get the final answer, we need to add the value Xτ2

(which is clearly equal to 2) to the sum:

E[

τ2∑
k=0

Xk] = (Fg2)1 + 2.

Problem 14.43. In a “Gambler’s ruin” situation with a = 3 (S = {0, 1, 2, 3}) and p = 1
2 compute the

probability that the gambler will go bankrupt before her wealth reaches a, if her initial wealth
is X0 = 2. You must use the matrix technique (the one in the “Absorption and Reward” lecture
with U , Q, etc.) Remember that for a, b, c, d ∈ R with ad− bc 6= 0, we have[

a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
.

Solution: The states 0 and 3 are absorbing, and all the others are transient. Therefore
C1 = {0}, C2 = {3} and T = T1 = {1, 2}. The transition matrix P in the canonical form (the rows
and columns represent the states in the order 0, 3, 1, 2)

P =


1 0 0 0
0 1 0 0
1
2 0 0 1

2

0 1
2

1
2 0

 so that Q =

 0 1
2

1
2 0

 , R =

 1
2 0

0 1
2


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The matrix I −Q is a 2× 2 matrix so it is easy to invert:

(I −Q)−1 =
4

3

 1 1
2

1
2 1

 .
So

U = (I −Q)−1R =
4

3

 1 1
2

1
2 1

 1
2 0

0 1
2

 = 4
3

 1
2

1
4

1
4

1
2

 .
Therefore, for the initial “wealth” 2, the probability of going bankrupt before getting rich is 1

3 .

Problem 14.44. Let {Xn}n∈N0 be a Markov chain with the following transition matrix

P =

1/2 1/2 0
1/3 1/3 1/3
0 0 1


Suppose that the chains starts from the state 1.

1. What is expected time that will pass before the chain first hits 3?

2. What is the expected number of visits to state 2 before 3 is hit?

3. Would your answers to (1) and (2) change if we replaced values in the first row of P by any
other values (as long as P remains a stochastic matrix)? Would 1 and 2 still be transient
states?

4. Use the idea of part (3) to answer the following question. What is the expected number of
visits to the state 2 before a Markov chain with transition matrix

P =

17/20 1/20 1/10
1/15 13/15 1/15
2/5 4/15 1/3


hits the state 3 for the first time (the initial state is still 1)? Remember this trick for the
final.

Solution: The states 1 and 2 are transient and 3 is recurrent, so the canonical decomposition is
{3} ∪ {1, 2} and the canonical form of the transition matrix is

P =

 1 0 0
0 1/2 1/2

1/3 1/3 1/3


The matrices Q and R are given by

Q =

[
1/2 1/2
1/3 1/3

]
, R =

[
0

1/3

]
,

and the fundamental matrix F = (I −Q)−1 is

F =

[
4 3
2 3

]
.
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1. The reward function g(1) = g(2) = 1, i.e. g =

[
1
1

]
will give us the expected time until

absorption:

v = Fg =

[
4 3
2 3

] [
1
1

]
=

[
7
5

]
.

Since the initial state is i = 1, the expected time before we first hit 3 is v1 = 7.

2. Here we use the reward function

g(i) =

{
0, i = 1,

1, i = 2.

to get

v = Fg =

[
4 3
2 3

] [
0
1

]
=

[
3
3

]
,

so the answer is v1 = 3.

3. The way the question is posed, the answer is “Maybe”. What I intended to ask, though, is
the same question about the third row. In that case, the answer is “No, they would not”.
Indeed, these numbers only affect what the chain does after it hits 3 for the first time, and
that is irrelevant for calculations about the events which happen prior to that.
No, all states would be recurrent. The moral of the story that the absorption calculations
can be used even in the settings where all states are recurrent. You simply need to adjust
the probabilities, as shown in the following part of the problem.

4. We make the state 3 absorbing (and states 1 and 2 transient) by replacing the transition
matrix by the following one:

P =

17/20 1/20 1/10
1/15 13/15 1/15

0 0 1


The new chain behaves exactly like the old one until it hits 3 for the first time. Now we
find the canonical decomposition and compute the matrix F as above and get

F =

[
8 3
4 9

]
,

so that the expected number of visits to 2 (with initial state 1) is F12 = 3.
Problem 14.45. A math professor has 4 umbrellas. He keeps some of them at home and some in
the office. Every morning, when he leaves home, he checks the weather and takes an umbrella
with him if it rains. In case all the umbrellas are in the office, he gets wet. The same procedure
is repeated in the afternoon when he leaves the office to go home. The professor lives in a
tropical region, so the chance of rain in the afternoon is higher than in the morning; it is 1/5
in the afternoon and 1/20 in the morning. Whether it rains of not is independent of whether it
rained the last time he checked.

On day 0, there are 2 umbrellas at home, and 2 in the office. What is the expected number
of days that will pass before the professor gets wet (remember, there are two trips each day)?
What is the probability that the first time he gets wet it is on his way home from the office?
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Solution: We model the situation by a Markov
chain whose state space S is given by

S = {(p, u) : p ∈ {H,O}, u ∈ {0, 1, 2, 3, 4, w}},

where the first coordinate denoted the current
position of the professor and the second the
number of umbrellas at home (then we automat-
ically know how many umbrellas there are at
the office). The second coordinate w stands for
“wet” and the state (H,w) means that the pro-
fessor left home without an umbrella during a
rain (got wet). The transitions between the states
are simple to figure out. For example, from the
state (H, 2) we either move to (O, 2) (with prob-
ability 19/20) or to (O, 1) (with probability 1/20),
and from (O, 4) we move to (O,w) with probabil-
ity 1/5 and to (H, 4) with probability 4/5. States
(H,w) and (O,w) are made absorbing, and so,
all the other states are transient. The first ques-
tion can be reformulated as a reward problem
with reward g ≡ 1, and the second one is about
absorption. We use Mathematica to solve it, and
the code is on the right. The answers are: the
probability of getting wet for the first time on
the way home from the office is about 99%. The
expected number of days before getting wet is
about 20.

ph = 1 � 20; po = 1 � 5;

Transitions = 8

88"W", "O"<, 8"W", "O"<, 1<, 88"W", "H"<, 8"W", "H"<, 1<,

884, "H"<, 84, "O"<, 1 - ph<, 884, "H"<, 83, "O"<, ph<,

883, "H"<, 83, "O"<, 1 - ph<, 883, "H"<, 82, "O"<, ph<,

882, "H"<, 82, "O"<, 1 - ph<, 882, "H"<, 81, "O"<, ph<,

881, "H"<, 81, "O"<, 1 - ph<, 881, "H"<, 80, "O"<, ph<,

880, "H"<, 80, "O"<, 1 - ph<, 880, "H"<, 8"W", "H"<, ph<,

880, "O"<, 80, "H"<, 1 - po<, 880, "O"<, 81, "H"<, po<,

881, "O"<, 81, "H"<, 1 - po<, 881, "O"<, 82, "H"<, po<,

882, "O"<, 82, "H"<, 1 - po<, 882, "O"<, 83, "H"<, po<,

883, "O"<, 83, "H"<, 1 - po<, 883, "O"<, 84, "H"<, po<,

884, "O"<, 84, "H"<, 1 - po<, 884, "O"<, 8"W", "O"<, po<<;

Initial = 8882, "H"<, 1<<;

Rain = BuildChain@Transitions, InitialD;

P = TransitionMatrix@RainD;

States@RainD

880, H<, 80, O<, 81, H<, 81, O<, 82, H<,

82, O<, 83, H<, 83, O<, 84, H<, 84, O<, 8W, H<, 8W, O<<

Q = P@@1 ;; 10, 1 ;; 10DD;

F = Inverse@IdentityMatrix@10D - QD;

R = P@@1 ;; 10, 11 ;; 12DD;

G = Table@81<, 8i, 1, 10<D;

InitialState = StateToPosition@82, "H"<, RainD;

AbsorptionProbabilities = N@HF.RL@@InitialStateDDD

80.0109781, 0.989022<

ExpectedTime = N@HF.GL@@InitialStateDDD � 2

819.57<

Problem 14.46. A zoologist, Dr. Gurkensaft, claims to have trained Basil the Rat so that it
can aviod being shocked and find food, even in highly confusing situations. Another scien-
tist, Dr. Hasenpfeffer does not agree. She says that Basil is stupid and cannot tell the difference
between food and an electrical shocker until it gets very close to either of them.

The two decide to see who is right by performing the following experiment. Basil is put in
the compartment 3 of a maze that looks like this:

1 2

3 4 5

Food

Shock

.

Dr. Gurkensaft’s hypothsis is that, once in a compartment with k exits, Basil will prefer the exits
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that lead him closer to the food. Dr. Hasenpfeffer’s claim is that every time there are k exits
from a compartment, Basil chooses each one with probability 1/k.

After repeating the experiment 100 times, Basil got shocked before getting to food 52 times
and he reached food before being shocked 48 times. Compute the theoretical probabilities of
being shocked before getting to food, under the assumption that Basil is stupid (all exits are
equally likely). Compare those to the observed data. Whose side is the evidence on?

Solution: The task here is to calculate the absorption probability for a Markov chain which
represents the maze. Using Mathematica, we can do it in the following way:

In[30]:= Transitions = 8

81, 2, 1 � 2<, 81, 3, 1 � 2<,

82, 1, 1 � 3<, 82, "Food", 1 � 3<, 82, 4, 1 � 3<,

83, 1, 1 � 3<, 83, 4, 1 � 3<, 83, "Shock", 1 � 3<,

84, 3, 1 � 3<, 84, 2, 1 � 3<, 84, 5, 1 � 3<,

85, 4, 1 � 2<, 85, "Food", 1 � 2<<;

Initial = 883, 1<<;

Maze = BuildChain@Transitions, InitialD;

In[33]:= States@MazeD

Out[33]= 81, 2, 3, 4, 5, Food, Shock<

In[34]:= P = TransitionMatrix@MazeD;

Q = P@@1 ;; 5, 1 ;; 5DD;

R = P@@1 ;; 5, 6 ;; 7DD;

F = Inverse@IdentityMatrix@5D - QD;

In[38]:= N@HF.RL@@3DDD

Out[38]= 80.416667, 0.583333<

Therefore, the probability of getting to food before being shocked is about 42%. This is somewhat
lower than the observed 48% and even though there may be some truth to Dr. Gurkensaft’s claims,
these two numbers are not very different. Note: For those of you who know a bit of statistics, you
can easily show that we cannot reject the null hypothesis that Basil is stupid (in the precise sense
described in the problem), even at the 90% significance level. In fact, the (one-sided) p-value
(using a binomial test) is a bir larger than 0.1. That means that a truly stupid rat would appear
smarter than Basil 10% of the time by pure chance.

14.8 Markov chains - stationary and limiting distributions

Problem 14.47. Let {Xn}n∈N0 be a Markov chain with the transition matrix

P =


1
4

1
4

1
2

0 1
3

2
3

1
3

1
3

1
3


1. Find all stationary distributions.
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2. The chain starts from the state i = 1. What is the expected number of steps before it
returns to 1?

3. How many times, on average, does the chain visit 2 between two consecutive visits to 1?

4. Each time the chain visits the state 1, $1 is added to an account, $2 for the state 2, and nothing
in the state 3. Estimate the amount of money on the account after 10000 transitions? You
may assume that the law of large numbers for the Markov chains provides an adequate
approximation.

Solution:

1. Stationary distributions π = (π1, π2, π3) satisfy πP = π, i.e.,

1
4π1 + 1

3π3 = π1
1
4π1 + 1

3π2 + 1
3π3 = π2

1
2π1 + 2

3π2 + 1
3π3 = π3.

We also know that π1 + π2 + π3 = 1, and that the matrix P is stochastic. Therefore, the
third equation below is a linear combination of the first two, and can be exculded from
consideration (this is always the case in problems with stationary distributions).
The first equation yields that π3 = 9

4π1, and the second one that π2 = 3
2(14π1 + 1

3π3) = 3
2π1. It

remains to find π1 such that π1+π2+π3 = 1, i.e, π1+ 3
2π1+ 9

4π1 = 1, i.e., π1 = (1+ 3
2+ 9

4)−1 = 4
19 .

Therefore,
π = ( 4

19 ,
6
19 ,

9
19)

is the only stationary distribution.

2. The number of steps between two returns to a state i (in an irreducible finite chain) is given
by

Ei[τi(1)] =
1

πi
.

Therefore, E1[τ1(1)] = 19
4 .

3. The number of visits to the state j between two consecutive visits to the state i (in an
irreducible finite chain) is given by

Ei[
τ1(1)∑
n=0

1{Xn=j}] =
πj
πi
.

Therefore, our chain will visit the state 2 on average 1.5 times between two visits to the
state 1.

4. The chain in question is irreducible and finite, so the law of large numbers applies:

lim
N→∞

1

N

N−1∑
n=0

f(Xn) =
∑
i∈§

f(i)πi.
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In our case f(1) = 1, f(2) = 2 and f(3) = 0, so the amount of money M =
∑10000

n=0 f(Xn)
can be approximated as

M = 10001× 1
10001

10000∑
n=0

f(Xn) ≈ 10001× ($1 4
19 + $2 6

19) = 10001× $16
19 ≈ $8422.

Problem 14.48. Let {Xn}n∈N0 be a Markov chain whose transition graph is given below:

0.5

0.5

1.

0.5

0.5

0.25

0.5

0.25

1.

0.5

0.5

1.

1.

2.

3.

4.

5.

6.

7.

1. Find all stationary distributions.

2. Is there a limiting distribution?

3. If the chain starts from the state 5, what is the asymptotic proportion of time it will spend
at state 7? How about the state 5?

Solution:

1. The classes are C1 = {1, 2, 3}, C2 = 6, 7, T1 = {4} and T2 = {5}. Any stationary distribution
π will have π4 = π5 = 0 (since 4 and 5 are transient states). The next step is to find
(unique) stationary distributions for C1 and C2 (viewed as Markov chains in themselves).
The transition matrices PC1 and PC2 of C1 and C2 are given by

PC1 =

 0 0.5 0.5
1. 0 0
0.5 0.5 0

 , PC2 =

[
0.5 0.5
1. 0

]

The unique distributions πC1 , πC2 which solve the equations πC1 = πC1PC1 and πC2 =
πC2PC2 respectively are

πC1 = (49 ,
1
3 ,

2
9), πC2 = (23 ,

1
3).

Therefore, the stationary distributions for P are exactly those of the form

π = (α1
4
9 , α1

1
3 , α1

2
9 , 0, 0, α2

2
3 , α2

1
3),

where α1, α2 ≥ 0 satisfy α1 + α2 = 1.
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2. No limiting distribution exists because of the dependence on the initial conditions. To make
the argument a bit more rigorous we suppose, to the contrary, that a limiting distribution
π = (π1, . . . , π7) exists, i.e.,

πj = lim
n→∞

p
(n)
ij , for all i, j = 1, 2, . . . , 7.

When we start in C1, the chain will stay there, so p
(n)
11 + p

(n)
12 + p

(n)
13 = 1, for all n, and,

consequently,
π1 + π2 + π3 = lim

n→∞
(p

(n)
11 + p

(n)
12 + p

(n)
13 ) = 1.

Similarly, if we start in C2, we stay in C2, so π6 + π7 = 1, by the same argument. This is a
contradiction beacause π1 + π2 + · · ·+ π7 must be equal to 1, but we have proven that

π1 + π2 + · · ·+ π7 ≥ π1 + π2 + π3 + π6 + π7 = 2.

3. When the chain starts from the state 5, it will be in 6 in the next step, and will stay in C2

forever. The fact that the chain spent one unit of time in the state 5 will be negligible as
n → ∞. Therefore, we need to compute the asymptotic proportion of time that the chain
with transition matrix PC2 will spend in 7. This is given by πC2

7 = 1/3. As for the state
5 itself, the chain will spend only one unit of time there, so, the proportion of time spent
there will converge to 0.

Problem 14.49. An airline reservation system has two computers, only one of which is in opera-
tion at any given time. A computer may break down on any given day with probability p ∈ (0, 1).
There is a single repair facility which takes two days to restore a computer to normal. The
facilities are such that only one computer at a time can be dealt with. Form a Markov chain that
models the situation (make sure to keep track of the number of machines in operation as well
as the status of the machine - if there is one - at the repair facility).

1. Find the stationary distribution.

2. What percentage of time (on average) are no machines operable?

3. What percentage of time (on average) is exactly one machine operable?

Solution:

1. Any of the computers can be in the following 4 conditions: in operation, in repair facility
- 2nd day, in repair facility - 1st day, waiting to enter the repair facility. Since there are
two computers, each state of the Markov chain will be a quadruple of numbers denoting the
number of computers in each conditions. For example, (1, 0, 1, 0) means that there is one
computer in operation and one which is spending its first day in the repair facility. If there
are no computers in operation, the chain moves deterministically, but if 1 or 2 computers
are in operation, they break down with probability p each, independently of the other. For
example, if there are two computers in operation (the state of the system being (2, 0, 0, 0)),
there are 3 possible scenarios: both computers remain in operation (that happens with
probability (1− p)2), exactly one computer breaks down (the probability of that is 2p(1− p))
and both computers break down (with probability p2). In the first case, the chain stays in
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the state (2, 0, 0, 0). In the second case, the chain moves to the state (1, 0, 1, 0) and in the
third one one of the computers enters the repair facility, while the other spends a day
waiting, which corresponds to the state (0, 0, 1, 1). All in all, here is the transition graph of
the chain:

1

1
p

1 - p
p

1 - p

p^2

2 pH1-pL

H1-pL^2

H0,0,1,1L

H0,1,0,1L H1,0,1,0L

H1,1,0,0L

H2,0,0,0L

One can use Mathematica (or work by hand) to obtain the unique stationary distribution

π =

(
(1−p)2p2

2p4−4p3+p2+2p+1
, p4−3p3+3p2

2p4−4p3+p2+2p+1
, 2p−p2
2p4−4p3+p2+2p+1

,
(1−p)(2p−p2)

2p4−4p3+p2+2p+1
, (1−p)2
2p4−4p3+p2+2p+1

)
where the states are ordered as follows S = {(0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (2, 0, 0, 0)}.

2. No machines are operable if the system is in (0, 0, 1, 1) or in (0, 1, 0, 1). Therefore, the
asymptotic precentage of time no machines are operable is

π1 + π2 = (p−1)2p2+p4−2p3+3p2

2p4−4p3+p2+2p+1
.

3. Exactly one machine is operable in states (1, 0, 1, 0) and (1, 1, 0, 0), so the required asymptotic
precentage is

π3 + π4 = (p−2)2p
2p4−4p3+p2+2p+1

.
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Here is the Mathematica code I used:
In[51]:= $Assumptions = Hp > 0L && H1 - p > 0L;

H** just to simplify some internal computations. Ignore **L

In[52]:= Transitions = 8

8"H2,0,0,0L", "H2,0,0,0L", 1 + p^2 - 2 p<,
8"H2,0,0,0L", "H1,0,1,0L", 2 p - 2 p^2<,
8"H2,0,0,0L", "H0,0,1,1L", p^2<,
8"H1,0,1,0L", "H0,1,0,1L", p<,
8"H1,0,1,0L", "H1,1,0,0L", 1 - p<,
8"H1,1,0,0L", "H1,0,1,0L", p<,
8"H1,1,0,0L", "H2,0,0,0L", 1 - p<,
8"H0,1,0,1L", "H1,0,1,0L", 1<,
8"H0,0,1,1L", "H0,1,0,1L", 1<
<;

Initial = 88"H2,0,0,0L", 1<<;
G = BuildChain@Transitions, InitialD;
P = TransitionMatrix@GD;

In[56]:= v = NullSpace@Transpose@P - IdentityMatrix@5DDD@@1DD;
pi = v�Simplify@Total@vDD

Out[57]= : ���������������������������������������������������������
H-1 + pL2 p2

1 + 2 p + p2 - 4 p3 + 2 p4
, - ���������������������������������������������������������

-3 p2 + 3 p3 - p4

1 + 2 p + p2 - 4 p3 + 2 p4
,

- ���������������������������������������������������������

-2 p + p2

1 + 2 p + p2 - 4 p3 + 2 p4
, - ���������������������������������������������������������

H-1 + pL I2 p - p2M
1 + 2 p + p2 - 4 p3 + 2 p4

, ���������������������������������������������������������
H-1 + pL2

1 + 2 p + p2 - 4 p3 + 2 p4
>

Problem 14.50. Let {Yn}n∈N0 be a sequence of die-rolls, i.e., a sequence of independent random
variables with distribution

Yn ∼
(

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

)
.

Let {Xn}n∈N0 be a stochastic process defined by Xn = max(Y0, Y1, . . . , Yn). In words, Xn is the
maximal value rolled so far.

1. Explain why X is a Markov chain, and find its transition matrix and the initial distribution.

2. Supposing that the first roll of the die was 3, i.e., X0 = 3, what is the expected time until a
6 is reached?

3. Under the same assumption as above (X0 = 3), what is the probability that a 5 will not be
rolled before a 6 is rolled for the first time?

4. Starting with the first value X0 = 3, each time a die is rolled, the current record (the value
of Xn) is written down. When a 6 is rolled for the first time all the numbers are added up
and the result is called S (the final 6 is not counted). What is the expected value of S?

(Hints:
1. You can eliminate 1 and 2 from the state space for parts (2) and (3).)

2. Use the fact that

A−1 =

 1
a

r
ab

rb+r2

abc
0 1

b
r
bc

0 0 1
c

 when A =

a −r −r
0 b −r
0 0 c

 , for a, b, c, r > 0.
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Solution:

1. The value of Xn+1 is either going to be equal to Xn if Yn+1 happens to be less than or
equal to it, or it moves up to Yn+1, otherwise, i.e., Xn+1 = max(Xn, Yn+1). Therefore, the
distribution of Xn+1 depends on the previous values X0, X1, . . . , Xn only through Xn, and,
so, {Xn}n∈N0 is a Markov chain on the state space S = {1, 2, 3, 4, 5, 6}. The transition Matrix
is given by

P =



1/6 1/6 1/6 1/6 1/6 1/6
0 1/3 1/6 1/6 1/6 1/6
0 0 1/2 1/6 1/6 1/6
0 0 0 2/3 1/6 1/6
0 0 0 0 5/6 1/6
0 0 0 0 0 1/6


2. As stated in the Hint, we can restrict our attention to the Markov chain on the state space
S = {3, 4, 5, 6} with the transition matrix

P =


1/2 1/6 1/6 1/6
0 2/3 1/6 1/6
0 0 5/6 1/6
0 0 0 1/6


The state 6 is absorbing (and therefore recurrent), while all the others are transient, so the
canonical form of the matrix (with the canonical decomposition S = {6} ∪ {3, 4, 5} is given
by 

1 0 0 0
1/6 1/2 1/6 1/6
1/6 0 2/3 1/6
1/6 0 0 5/6


The fundamental matrix F = (I −Q)−1 is now given by

F =

1/2 −1/6 −1/6
0 1/3 −1/6
0 0 1/6

−1 =

2 1 3
0 3 3
0 0 6


The expected time to absorption can be computed by using the reward 1 for each state:

F

1
1
1

 =

6
6
6


Therefore it will take on average 6 rolls until the first 6.
Note: You don’t need Markov chains to solve this part; the expected time to absorption is
nothing but the waiting time until the first 6 is rolled - a shifted geometrically distributed
random variable with parameter 1/6. Therefore, its expectation is 1 + 5/6

1/6 = 6.
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3. We make the state 5 absorbing and the canonical decomposition changes to S = {5}∪{6}∪
{3, 4}. The canonical form of the transition matrix is

1 0 0 0
0 1 0 0

1/6 1/6 1/2 1/6
1/6 1/6 0 2/3


and so

Q =

[
1/2 1/6
0 2/3

]
and R =

[
1/6 1/6
1/6 1/6

]
.

Therefore, the absorption probabilities are the entries of the matrix

(I −Q)−1R =

[
1/2 1/2
1/2 1/2

]
,

and the answer is 1/2.
Note: You don’t need Markov chains to solve this part either; the probability that 6 will be
seen before 5 is the same as the probability that 5 will appear before 6. The situation is
entirely symmetric. Therefore, the answer must be 1/2.

4. This problem is about expected reward, where the reward g(i) of the state i ∈ {3, 4, 5} is
g(i) = i. The answer is v3, where

v = F

3
4
5

 =

25
27
30

 ,
i.e., the expected value of the sum is 25.
Note: Can you do this without the use of the Markov-chain theory?

Problem 14.51. A car-insurance company classifies drivers in three categories: bad, neutral and
good. The reclassification is done in January of each year and the probabilities for transitions
between different categories is given by

P =

1/2 1/2 0
1/5 2/5 2/5
1/5 1/5 3/5

 ,
where the first row/column corresponds to the bad category, the second to neutral and the third
to good.

1. The company started in January 1990 with 1400 drivers in each category. Estimate the
number of drivers in each category in 2090. Assume that the total number of drivers does
not change in time.

2. A yearly premium charged to a driver depends on his/her category; it is $1000 for bad
drivers, $500 for neutral drivers and $200 for good drivers. A typical driver has a total
of 56 years of driving experience. Estimate the total amount he/she will pay in insurance
premiums in those 56 years. You may assume that 56 years is long enough for the limiting
theorems to provide an accurate approximation.
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Solution:

1. Equal numbers of drivers in each category corresponds to the uniform initial distribution,
a(0) = (1/3, 1/3, 1/3). The distribution of drivers in 2090 is given by the distribution of
a(100) of X100 given by

a(100) = a(0)P 100,

which can be approximated by the limiting distribution of the underlying Markov chain.
The limiting distribution is always stationary (and it exists in the present chase thanks to
irreducibility and aperiodicity). The stationary distribution solves the linear system π = πP ;
we easily get

π = (
4

14
,

5

14
,

5

14
).

Therefore, the total of 4200 drivers will be distributed as ( 4
14 × 4200, 5

14 × 4200, 5
14 × 4200) =

(1200, 1500, 1500).

2. Let the function f : S → R be given by f(1) = 1000, f(2) = 500 and f(3) = 200. The
total amount paid in insurance premiums is

∑54
k=0 f(Xk). By the Law of large numbers for

Markov chains, we have

55∑
k=0

f(Xk) = 56×
∑55

k=0 f(Xk)

56
≈ 56× (π1f(1) + π2f(2) + π3f(3)) = 30000.

14.9 Markov chains - various multiple-choice problems

In each of the following multiple-choice problems choose the answer that necessarily follows
from the information given. There will be one and only one correct choice.

Problem 14.52. Let C be a class in a Markov chain. Then

(a) C is closed,

(b) Cc is closed,

(c) at least one state in C is recurrent,

(d) for all states i, j ∈ C , pij > 0,

(e) none of the above.

Solution: The answer is (e).

(a) False. Take C = {(0, 0)} in the “Tennis example”.

(b) False. Take C = {Amélie wins} in the “Tennis example”.

(c) False. This is only true in finite chains. Take the Deterministically Monotone Markov
Chain as an example. All of its states are transient.
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(d) False. This would be true if it read “for each pair of states i, j ∈ C , there exists n ∈ N such
that p(n)ij > 0”. Otherwise, we can use the “Tennis chain” and the states i = (40, Adv) and
j = (Adv, 40). They belong to the same class, but pij = 0 (you need to pass through (40, 40)
to go from one to another).

(e) True.

Problem 14.53. In a Markov chain whose state space has n elements (n ∈ N),

(a) all classes are closed

(b) at least one state is transient,

(c) not more than half of all states are transient,

(d) there are at most n classes,

(e) none of the above.

Solution: The answer is (d).

(a) False. In the “Tennis” example, there are classes that are not closed.

(b) False. Just take the Regime Switching with 0 < p01, p10 < 1. Both of the states are recurrent
there. Or, simply take a Markov chain with only one state (n = 1).

(c) False. In the “Tennis” example, 18 states are transient, but n = 20.

(d) True. Classes form a partition of the state space, and each class has at least one element.
Therefore, there are at most n classes.

(e) False.

Problem 14.54. Let C1 and C2 be two (different) classes. Then

(a) i→ j or j → i, for all i ∈ C1, and j ∈ C2,

(b) C1 ∪ C2 is a class,

(c) if i→ j for some i ∈ C1 and j ∈ C2, then k 6→ l for all k ∈ C2 and l ∈ C1,

(d) if i→ j for some i ∈ C1 and j ∈ C2, then k → l for some k ∈ C2 and l ∈ C1,

(e) none of the above.

Solution: The answer is (c).

(a) False. Take C1 = {Amélie wins} and C2 = {Björn wins}.

(b) False. Take the same example as above.
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(c) True. Suppose, to the contrary, that k → l for some k ∈ C2 and l ∈ C1. Then, since j and k
are in the same class, we must have j → k. Similarly, l → i (l and i are in the same class).
Using the transitivity property of the communication relation, we get j → k → l → i, and
so j → i. By the assumption i→ j , and so, i↔ j . This is a contradiction, however, with the
assumption that i and j are in different classes.

(d) False. In the “Tennis” example, take i = (0, 0), j = (30, 0), C1 = {i} and C2 = {j}.

(e) False.

Problem 14.55. Let i be a recurrent state with period 5, and let j be another state. Then

(a) if j → i, then j is recurrent,

(b) if j → i, then j has period 5,

(c) if i→ j , then j has period 5,

(d) if j 6→ i then j is transient,

(e) none of the above.

Solution: The answer is (c).

0.50.5

1

1.

1

1

1
1

0 16

2
3

4
5

(a) False. Take j = 0 and i = 1 in the chain in the picture.

(b) False. Take the same counterexample as above.

(c) True. We know that i is recurrent, and since all recurrent classes are closed, and i→ j , h
must belong to the same class as i. Period is a class property, so the period of j is also 5.

(d) False. Take j = 6, i = 0 in the chain in the picture.

(e) False.

Problem 14.56. Let i and j be two states such that i is transient and i↔ j . Then

(a)
∑∞

n=1 p
(n)
jj =

∑∞
n=1 p

(n)
ii ,

(b) if i→ k, then k is transient,

(c) if k → i, then k is transient,

(d) period of i must be 1,
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(e) none of the above.

Solution: The answer is (c).

1
0.25

0.5

0.25 11 2 3

(a) False. In the chain above, take i = 1 and j = 2. Clearly, i ↔ j , and both of them are
transient. A theorem from the notes states that

∑∞
n=1 p

(n)
jj < ∞ and

∑∞
n=1 p

(n)
ii < ∞, but

these two sums do not need to be equal. Indeed, the only way for i = 1 to come back to
itself in n steps is to move to 2, come back to 2 in n−2 steps and then jump to 1. Therefore,
p
(n)
ii = 1× p(n−2)jj × 0.25 for n ≥ 3, p(2)ii = 1× 0.25 and p(1)ii = pii = 0. Therefore,

∞∑
n=1

p
(n)
ii = p

(1)
ii + p

(2)
ii +

∞∑
n=3

p
(n)
ii = 0 + 0.25 + 0.25

∞∑
n=1

p
(n)
jj .

This equality implies that the two sums are equal if and only if

0.75
∞∑
n=1

p
(n)
ii = 0.25, i.e.,

∞∑
n=1

p
(n)
jj =

∞∑
n=1

p
(n)
ii =

1

3
.

We know however, that one of the possible ways to go from 2 to 2 in n steps is to just stay
in 2 all the time. The probability of this trajectory is (1/2)n, and so, p(n)jj ≥ (1/2)n for all n.
Hence,

∞∑
n=1

p
(n)
jj ≥

∞∑
n=1

(1/2)n = 1.

Therefore, the two sums cannot be equal.

(b) False. Take i = 2 and j = 3 in the chain above.

(c) True. Suppose that k → i, but k is recurrent. Since recurrent classes are closed, i must
be in the same class as k. That would mean, however, that i is also recurrent. This is a
contradiction with the assumption that i is transient.

(d) False. Take i = 2 in the modification of the example above in which p22 = 0 and p21 =
p23 = 1/2. The state 2 is still transient, but its period is 2.

(e) none of the above.

Problem 14.57. Suppose there exists n ∈ N such that Pn = I , where I is the identity matrix and
P is the transition matrix of a finite-state-space Markov chain. Then

(a) P = I ,

(b) all states belong to the same class,
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(c) all states are recurrent

(d) the period of each state is n,

(e) none of the above.

Solution: The answer is (c).

(a) False. Take the Regime-switching chain with

P =

[
0 1
1 0

]
Then P 2 = I , but P 6= I .

(b) False. If P = I , all states are absorbing, and, therefore, each is in a class of its own.

(c) True. By the assumption P kn = (Pn)k = Ik = I , for all k ∈ N. Therefore, p(kn)ii = 1 for
all k ∈ N, and so limm→∞ p

(m)
ii 6= 0 (maybe it even doesn’t exist). In any case, the series∑∞

m=1 p
(m)
ii cannot be convergent, and so, i is recurrent, for all i ∈ S . Alternatively, the

condition Pn = I means that the chain will be coming back to where it started - with
certainty - every n steps, and so, all states must be recurrent.

(d) False. Any chain satisfying Pn = I , but with the property that the n above is not unique is
a counterexample. For example, if P = I , then Pn = I for any n ∈ N.

(e) False.

Problem 14.58. Let {Xn}n∈N0 be a Markov chain with state space Z. Then

1. {|Xn|}n∈N0 is a Markov chain,

2. {|Xn|}n∈N0 is not a Markov chain,

3. {−3Xn}n∈N0 is a Markov chain,

4. {−3Xn}n∈N0 is not a Markov chain,

5. none of the above.

Problem 14.59. Let X be a gambler’s ruin chain with the upper barier a > 1 and p > 1
2 . Then

1. the probability of reaching a before reaching 0 is greater than 1
2 .

2. the probability of (eventual) bankruptcy does not depend on a,

3. the number of recurrent classes depends on a,

4. the limiting distribution exists,

5. none of the above.

Problem 14.60. Let i be a recurrent state with period 3, and let j be another state. Then
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1. if j → i, then j is recurrent,

2. if j → i, then j has period 3,

3. if i→ j , then j has period 3,

4. if j 6→ i then j is transient,

5. none of the above.

Problem 14.61. Let C1 and C2 be two (different) communication classes of a Markov chain. Then

1. i→ j or j → i, for all i ∈ C1, and j ∈ C2,

2. C1 ∪ C2 is a class,

3. if i→ j for some i ∈ C1 and j ∈ C2, then k 6→ l for all k ∈ C2 and l ∈ C1,

4. if i→ j for some i ∈ C1 and j ∈ C2, then k → l for some k ∈ C2 and l ∈ C1,

5. none of the above.

Problem 14.62. Two containers are filled with 50 balls each. A container is selected at random
(with equal probabilities) and a ball is taken from it and transfered to the other container. If the
selected container is empty, nothing happens. The same procedure is then repeated indefinitely.
A natural state space on which we model the situation is S = {0, 1, 2, . . . , 100}, where the state
i ∈ S corresponds to i balls in the first container and 100− i in the second.

1. all states have period 2,

2. (12 ,
1
2) is a stationary distribution,

3. all states are positive recurrent

4. the number of transient states would change if we started from the state i = 49,

5. none of the above.

Problem 14.63. Let {Xn}n∈N0 be a finite-state Markov chain with one transient and two recurrent
classes. Then

1. stationary distributions may not exist,

2. the limiting distribution does not exist,

3. the limiting distribution may or may not exist, depending on the particular chain,

4. the number of states is at least 4,

5. none of the above
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