C 3192

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2007.

Fifth Semester

(Regulation 2004)

Electronics and Communication Engineering

EC 1305 — TRANSMISSION LINES AND WAVE GUIDES

(Common to B.E. (Part-Time) Fourth Semester Regulation 2005)

Time: Three hours

(Two nos. of SMITH CHART can be provided. Use separate Smith Chart for Prob. No. 12 (a) (ii) and 12 (b))

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is frequency distortion?
- 2. Calculate the load reflection coefficient of an open and short circuited line.
- 3. Find the VSWR and reflection coefficient of a perfectly matched line with no reflection from load?
- 4. Name few applications of half-wave line.
- 5. What is the cut-off frequency of TEM wave?
- 6. Give the expression that relates phase velocity (V_p) , group velocity (V_g) and free space velocity (C).
- 7. Why the TE_{10} wave is called as dominant wave in rectangular wave guide?
- 8. How the TE₁₀ mode is launched or initiated in rectangular wave guide using a probe?
- 9. Define the quality factor of a cavity resonator.
- 10. What is cavity resonator?

PART B - $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Discuss in detail about Inductance loading of Telephone cables and derive the attenuation constant (α) , phase constant (β) and velocity of signal transmission (v) for the uniformly loaded cable. (10)

(ii) Explain in detail about the reflection on a line not terminated in its characteristic impedance (Z₀). (6)

Or

- (b) (i) A transmission line operating at 500 MHz has $Zo = 80 \Omega$, $\alpha = 0.04$ Np/m, $\beta = 1.5$ rad/m. Find the line parameters series resistance (R Ω /m), series inductance (L H/m), shunt conductance (G mho/m) and capacitance between conductors (C F/m). (10)
 - (ii) A DISTORTION LESS transmission line has attenuation constant (α) 1.15×10⁻³Np/m and capacitance of 0.1 nF/m. The characteristic resistance $\sqrt{(L/C)} = 50 \,\Omega$. Find the resistance, inductance and conductance per meter of the line. (6)
- 12. (a) (i) Discuss the application of Quarter-wave line in impedance matching and copper insulators. (6)
 - (ii) A 30 m long lossless transmission line with characteristic impedance (Z_0) of 50 Ω is terminated by a load impedance (Z_L) = 60 + j40 Ω . The operating wavelength is 90m. Find the reflection coefficient. Standing Wave Ratio and input impedance using SMITH chart. (10)

Or

- (b) A 50 Ω transmission line is connected to a load impedance $(Z_L) = 60 + j\,80\,\Omega$. The operating frequency is 300MHz. A DOUBLE-stub tuner spaced an eighth of a wave length apart is used to match the load to the line. Find the required lengths of the short circuited stubs using SMITH chart.
- 13. (a) (i) Derive the components of Electric and Magnetic field strength between a pair of parallel perfectly conducting planes of infinite extent in the 'Y' and 'Z' directions. The planes are separated in X direction by "a" meter. (10)
 - (ii) Derive the wave impedance for TE waves between parallel planes.

(6)

Or

2 C 3192

(b)	(i)	Discuss the characteristics of TE and TM waves and also derive the cut off frequency and phase velocity from the propagation constant. (8)
	(ii)	A parallel perfectly conducting plates are separated by 7 cm in air and carries a signal with frequency (f) of 6GHz in TE1 mode. Find
		(1) The cut-off frequency (fc),
		(2) Phase constant,
		(3) Attenuation constant and Phase constant for $f = 0.8$ fc and
		(4) Cut off wavelength. (8)
(a)	Derive the field configuration, cut off frequency and velocity propagation for TM waves in rectangular wave guide.	
		Or
(b)	brass dime $\varepsilon_r =$ Phassigna	The wave at 10GHz propagates with the velocity of 2×10^8 m/sec in a social
	Tecta	ingular wave guide for propagation through it:
(a)	(i)	Derive the TM wave components in circular wave guides using Bessel function. (12)
	(ii)	Calculate the resonant frequency of an air filled rectangular resonator of dimensions $a=3$ cm, $b=2$ cm and $d=4$ cm operating in TE_{101} mode. (4)

14.

15.

3 C 3192