DE-2788 105 DISTANCE EDUCATION M.C.A. (N.S) DEGREE EXAMINATION, DECEMBER 2011. DISCRETE MATHEMATICS (2001 onwards)Time : Three hours Maximum : 100 marks Answer any FIVE questions. All questions carry equal marks. $(5 \times 20 = 100)$ Show that $\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q)) \Leftrightarrow (\neg P \lor Q).$ 1. (a) Obtain the principal disjunctive normal form of $P \to ((P \to Q) \land \neg (\neg Q \lor \neg P))$. (b) Show that SVR is tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$. 2. (a) (10)Show that $(x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x)$. (b) (10)Show by means of example that $A \times B \neq B \times A$ 3. (a) an and $(A \times B) \times C \neq A \times (B \times C).$ (10) If $M_k = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$, $M_s = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$ are the rational matrices, find (b) $M_{R\circ S}, M_{\widetilde{R}}, M_{\widetilde{S}}, M_{R\circ S}$ and show that $M_{R\circ S} = M_{\widetilde{S}\circ \widetilde{R}}$.(10) If f(x) = x + 2, g(x) = x - 2 and h(x) = 3x for $x \in R$, where R is the set of real 4. (a) numbers. Find $g \circ f$; $f \circ g$; $f \circ f$; $g \circ g$; $f \circ h$; $h \circ g$; $h \circ f$ and $f \circ h \circ g$. (10)(b) Show that $f: X \to Y$ is one-to-one iff any proper subsets of X are mapped into proper subsets of Y; that is if $A \subset B \subseteq X$, then $f(A) \subset f(B) \subseteq Y$. (10)Given the algebraic system $\langle N, + \rangle$ and $\langle Z_4, +4 \rangle$, where N is the set of natural (a) 5.numbers and + is the operation of addition on N, Show that there exists a homomorphism from $\langle N, + \rangle$ to $\langle Z_4, +4 \rangle$. (10)For any commutative monoid $\langle M, \, *
angle$, prove that the set of idempotent elements (b) of M, forms a submonoid. Show that the set of all invertible elements of a monoid form a group under the (c) same operation as that of the monoid. Show that in a group $\langle G, * \rangle$, if for any $a, b \in G$, $(a * b)^2 = a^2 * b^2$, then $\langle G, * \rangle$ 6. (a) must be abelian. (6) Show that the set of all elements *a* of a group $\langle G, * \rangle$ such that a * x = x * a for (b)every $x \in G$ is a subgroup of G. (7)

- (c) Prove that, the order of a subgroup of a finite group divides the order of the group. (7)
- (a) State and prove the fundamental theorem of group homomorphism.(9)
 - (b) Define field.

- (c) Prove that the ring homomorphism preserves the distributive property.(8)
- 8. (a) Define the length of the path.

(3)

- (b) Show by means of an example that a simple diagraph in which exactly one node has indegree '0' and every other mode has indegree '1' is not necessarily a directed tree. (10)
- (c) In a simple digraph $G_{,=}\langle V, E \rangle$, prove that, every node of the digraph lies in exactly one strong component. (7)