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DISTANCE EDUCATION  

M.C.A. (N.S) DEGREE EXAMINATION, DECEMBER 2011. 

DISCRETE MATHEMATICS 

(2001 onwards) 

Time : Three hours Maximum : 100 marks 

Answer any FIVE questions. 

All questions carry equal marks. 

 (5 × 20 = 100) 

1. (a) Show that ( ) ( )( ) ( )QPQPPQP ∨⇔∨∨→∧ .  

     (10) 

 (b) Obtain the principal disjunctive normal form of ( ) ( )( )PQQPP ∨∧→→ .  

 (10) 

2. (a) Show that SVR is tautologically implied by ( ) ( ) ( )SQRPQP →∧→∧∨ . 

 (10) 

 (b) Show that ( ) ( ) ( )( ) ( ) ( ) ( ) ( )xQxxPxxQxPx ∃∨⇒∨ . (10) 

3. (a) Show by means of an example that ABBA ×≠×  and 

( ) ( )CBACBA ××≠×× . (10) 

 (b) If 
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4. (a) If ( ) ( ) 2,2 −=+= xxgxxf  and ( ) xxh 3=  for Rx ∈ , where R is the set of real 

numbers. Find fg o ; fhghhfggffgf oooooo ;;;;;  and ghf oo . (10) 

 (b) Show that YXf →:  is one-to-one iff any proper subsets of X are mapped into 

proper subsets of Y; that is if XBA ⊆⊂ , then ( ) ( ) YBfAf ⊆⊂ . (10) 

5. (a) Given the algebraic system +,N  and 4,4 +Z , where N is the set of natural 

numbers and + is the operation of addition on N, Show that there exists a 

homomorphism from +,N  to 4,4 +Z . (10) 

 (b) For any commutative monoid *,M , prove that the set of idempotent elements 

of M, forms a submonoid.    (5) 

 (c) Show that the  set of all invertible elements of a monoid form a group under the 

same operation as that of the monoid.   (5) 

6. (a) Show that in a group ∗,G , if for any Gba ∈, , ( ) 222
** baba = , then *,G  

must be abelian.  (6) 

 (b) Show that the set of all elements a of a group *,G  such that axxa ** =  for 

every Gx ∈  is a subgroup of G.     

 (7) 

 (c) Prove that, the order of a subgroup of a finite group divides the order of the 

group.  (7) 

7. (a) State and prove the fundamental theorem of group homomorphism.   

 (9) 

 (b) Define field.    (3) 
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 (c) Prove that the ring homomorphism preserves the distributive property.   

 (8) 

8. (a) Define the length of the path.  (3) 

 (b) Show by means of an example that a simple diagraph in which exactly one node 

has indegree ‘0’ and every other mode has indegree ‘1’ is not necessarily a 

directed tree.  (10) 

 (c) In a simple digraph EVG ,,= , prove that, every node of the digraph lies in 

exactly one strong component.    (7) 
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