2

(DSCO 11)

B.Sc. DEGREE EXAMINATION, MAY 2006 (Examination at the end of First Year) Part II - Information Technology Paper I: COMPUTER ORGANISATION

Time: Three hours Maximum: 100 marks

Answer any FIVE questions.
All questions carry equal marks.

- 1. (a) Design a sequential circuit with two JK Flip-Flops P and Q and two inputs x and y. If x = 0, the circuit remains in the same state regardless of the value of x. If x = y = 1, the circuit goes through the state transitions from 00 to 11 to 10 to 01 back to 00 and repeat. When x = 1 and y = 0, the circuit goes through the state transition from 00 to 01 to 10 to 11 back to 00 and repeat.
 - (b) Write down the characteristic tables and excitation tables for the following flip flops:
 - (i) SR flip flop
 - (ii) JK flip flop
 - (iii) D flip flop
 - (iv) T flip flop
- (a) List in how many ways an integer can be represented.

Prove the statement "An overflow is a problem in digital computers because the width of registers is finite".

- (b) Perform the subtraction with the following unsigned decimal numbers by taking 10's complement of the subtrahend.
 - (i) 550 132
 - (ii) 12 24
 - (iii) 8753 1640.
- 3. (a) Provoke which of the following register transfer statements are wrong and why?
 - (i) $xT:BR \leftarrow \overline{BR}, BR \leftarrow O$
 - (ii) $\nu T: R4 \leftarrow R1, R4 \leftarrow R3, R4 \leftarrow R1 + R3$
 - (iii) $zT : PC \leftarrow BR, PC \leftarrow PC + 1$
 - (b) Illustrate shift micro-operations with a neat circuit diagram.
- (a) Explain how interrupts are handled.
 - (b) Evaluate the arithmetic statement

$$X = \frac{A + B - C * (D - E * F)}{G * H + K}$$

using

(i) Zero

- (ii) One
- (iii) Two
- (iv) Three address instructions.
- (a) Illustrate the hardware implementation for signed magnitude addition and subtraction.
 - (b) Get the product of (-12) and (7) using Booth's algorithm.
- Explain the different modes of data transfer to and from peripherals in a digital computer.
- (a) Explain the concept of "Locality of Reference" and its importance in the world of memory hierarchy.

- (b) A two-way set associative cache memory uses blocks of 4 words. The cache can accommodate a total of 2048 words from main memory. The main memory size is 128 K x 31.
 - (i) Formulate all pertinent information required to construct cache memory.
 - (ii) What is the size of cache memory?
- 8. (a) Convert the following into polish and reverse polish notations:

(i)
$$A*B+A*(B*D+C*E)$$

(ii)
$$\frac{A^*[B+C^*(D+E)]}{F^*(G+H)}$$

(iii)
$$(3+4)[10(2+6)+8]$$
.

(iv)
$$A + B * [C * D + E * (F + G)]$$

- (b) Distinguish between a Branch instruction, a call sub-routine instruction and program interrupt.
- 9. (a) Differentiate combinational and sequential circuits with suitable examples for each of them.
 - (b) Explain the algorithm for 2's complement division with flow chart and also with an example.
- (a) Design an array multiplier that multiplies two 4-bit numbers using AND gates and Binary Address.
 - (b) Discuss how Input-Output processor act as an interface between CPU and external devices.

