(DSDM 11)

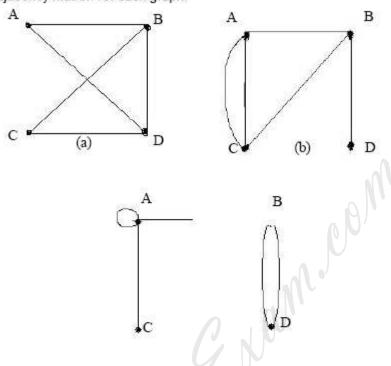
B.Sc. DEGREE EXAMINATION, MAY 2006 (Examination at the end of First Year) Part II - Information Technology Paper I: DISCRETE MATHEMATICS

Time: Three hours Maximum: 100 marks

Answer any FIVE questions.
All questions carry equal marks.

- (a) Using mathematical induction prove that for all positive integers n.
 6ⁿ⁺² + 7²ⁿ⁺¹ is divisible by 43.
 - (b) Prove that proposition P that the sum of first n positive integers is $\frac{1}{2}n(n+1)$: that is

$$P(n) = 1 + 2 + 3 + ... + n = \frac{1}{2}n(n+1)$$


2. (a) Let R and S be the following relations on $A = \{1,2,3\}$; $R = \{(1,1)(1,2)(2,3)(3,1)(3,3)\}$;

$$S = \{(1,2)(1,3)(2,1)(3,3)\}. \ \ \mathsf{Find} \ \ (\mathsf{ii}) \ \ R \cap S, R \cup S, R^C \qquad \mathsf{(iii)} \ \ R \circ S \qquad \mathsf{(iiii)} \ \ S^2 = S \circ S.$$

- (b) Consider the set Z of integers. Design a R b by $b = a^r$ for some positive integer r. Show that R is a partial order on Z, that is, show that R is (i) Reflexive (ii) Antisymmetric (iii) Transitive.
- (a) Prove that any planar graph is 4-colorable.
 - (b) Draw the the graph G corresponding to given adjacency matrix.

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

4. (a) Find the adjacency matrix A of each graph.

- (b) (i) Find the number of connected graphs with four vertices and draw them.
 - (ii) Draw all trees with five or fewer vertices.
- Draw all possible non similar trees T where
 - T is a binary tree with three nodes.
 - (b) T is a 2-tree with four external nodes.
- (a) Prove each of the following statements.
 - (a) I Tove each of the following statements.
 - (i) Any integer a is of the form 3k, 3k + 1, 3k + 2.
 - (ii) One of three consecutive integers in a multiple of 3.
 - (b) Write the dual of each Boolean equation.

(i)
$$(a*1)*(0+a')=0$$

(ii)
$$a + a'b = a + b$$

 Find the prime implicants and a minimal sum-of-products form for each of the following complete sum-of-products Boolean expressions.

(a)
$$E_1 = xyz + xyz' + x'yz' + x'y'z$$

(b)
$$E_2 = xyz + xyz' + xy'z + x'yz + x'y'z$$

(c)
$$E_3 = xyz + xyz' + x'yz' + x'y'z' + x'y'z$$

7

- (a) State and prove Euler's formula for planar graphs.
 - (b) Write a short notes on fuzzy sets and possibility theory.
- Construct a binary tree for the following expression.

$$(a+5)X[(3b+c)/(d+2)]$$

- (a) Prove that a binary tree with n nodes has exactly (n+1) null branches.
 - (b) Formulate an algorithm for the inorder traversal of a binary tree.

* * * * * *