ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE B.E. / B.TECH. DEGREE EXAMINATIONS : NOV / DEC 2011 REGULATIONS : 2008 FIFTH SEMESTER : CSE

080230017 - DISCRETE MATHEMATICS

Time: 3 Hours

Max . Marks : 100

 $(10 \times 2 = 20 \text{ Marks})$

PART - A

ANSWER ALL QUESTIONS

- 1. Construct the truth table for $(p \lor q) \rightarrow (p \land q)$
- 2. Show that the $qV(pVq)V(p\Lambda q)$ statement is a tautology.
- 3. Symbolise the statement "All men are giants"
- 4. Define quantifiers
- 5. If A and B are finite sets show that $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- 6. Show that in any Boolean Algebra (a+b)(a'+c) = ac + a' + bc
- 7. Define a characteristic function of a set
- 8. State whether the function $f(x) = 5x^2 + 7$ is injection, surjection or bijection on R, the set of real numbers.
- 9. Define a normal subgroup of a group.
- 10. If the minimum distance between two code words is 7, then find how many errors can be detected and how many errors can be corrected?

PART - B

(5 x 16 = 80 MARKS)

ANSWER ALL QUESTIONS

- 11a) (i) Find pdnf of $P \lor (P \to (Q \lor (Q \to R)))$ without using truth table.
 - (ii) Use the indirect method to show that $r \to 7q$, $r \lor s$, $s \to 7q$, $p \to q \Rightarrow 7p$.

(OR)

11b) (i) Construct the truth table for $((p \lor q) \land ((p \to r) \land (q \to r))) \to r$

(ii) Using direct method prove $(p \rightarrow q) \rightarrow r, p \land s, q \land t \Rightarrow r$

12a) (i) Prove that $(\exists x) (P(x) \land S(x)), (\forall x)(P(x) \rightarrow R(x)) \Rightarrow (\exists x) (R(x) \land S(x))$

(ii) By indirect method, prove that $(\forall x) (P(x) \lor Q(x)) \Rightarrow (\forall x) (P(x) \lor (\exists x) Q(x))$.

(**OR**)

- 12b) (i) Prove that $(\exists x) M(x)$ follows logically from the premises $(\forall x)(H(x) \rightarrow M(x))$ and $(\exists x) H(x).$, .eon
 - (ii) Prove the following implication

$$\forall x (P(x) \to Q(x) \land \forall x (Q(x) \to R(x) \Longrightarrow \forall x (P(x) \to R(x)))$$

- 13a) (i) If R is the relation on the set of positive integers such that $(a, b) \in R$ if and only if a^2 + a is even, prove that R is an equivalence relation.
 - (ii) If $\{L,\leq\}$ is a Lattice, then for any $a,b,c \in L$ prove that $a \land (b \lor c) \ge (a \land b) \lor (a \land c)$

(OR)

- 13b) (i) Define the relation P on $\{1,2,3,4\}$ by $P = \{(a,b)/|a-b|=1\}$. Determine the adjacency matrix of P^2
 - (ii) Simplify the Boolean expression $((x_1 + x_2) + (x_1 + x_3))x_1 \cdot \overline{x_2}$
- 14a) (i) Let $f: R \to R$ and $g: R \to R$ where R is the set of real numbers, find $f \bullet g$ and $g \bullet f$, if $f(x) = x^2 - 2$ and g(x) = x + 4
 - (ii) Show that the function $f(x, y) = x^{y}$ is a primitive recursive function.

(**OR**)

14b) (i) Show that $f: R - \{3\} \rightarrow R - \{1\}$ given by $f(x) = \frac{x-2}{x-3}$ is a bijection

(ii) Using characteristic function show that $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$

- 15a) (i) If H is a subgroup of g such that x² ∈ H for every x ∈ G prove that H is a normal subgroup of G
 - (ii) Find the minimum distance of the encoding function $e = B^2 \rightarrow B^4$ given by e(00) = 0000, e(10) = 0110, e(01) = 1011, e(11) = 1100

(OR)

15b) (i) If (G, \star) is an abelian group then for all a, b \in G, show that if $(a \star b)^n = a^n \star b^n$.

 (ii) Prove that a code can correct all combinations of k or fewer errors if and only if the minimum distance between any two code word is atleast 2k+1

