Total No. of Questions: 40]

[Total No. of Printed Pages: 16

March, 2009

MATHEMATICS

- nstructions: i) The question paper has five Parts A, B, C, D and E.

 Answer all the parts.
 - ii) Part A carries 10 marks, Part B carries 20 marks,
 Part C carries 40 marks, Part D carries 20 marks and
 Part E carries 10 marks.

PART - A

Answer all the ten questions :

 $10 \times 1 = 10$

- 1. Find the least positive remainder when 7^{30} is divided by 5.
- 2. If $\begin{bmatrix} 4 & x+2 \\ 2x-3 & x+1 \end{bmatrix}$ is a symmetric matrix, find x.
- Define a subgroup.
- 4. Find the direction cosine of the vector $2\hat{i} 3\hat{j} + 2\hat{k}$.
- 5. If the radius of the circle $x^2 + y^2 + 4x 2y k = 0$ is 4 units, then find k.
- 6. Find the equation of the parabola if its focus is (2, 3) and vertex is (4, 3).
- 7. Find the value of $\sin \left[\frac{1}{2} \cos^{-1} (-1) \right]$.

[Turn over

10

- 8. If 1, ω , ω^2 are the cube roots of unity, find the value of $(1 \omega + \omega^2)^6$.
- 9. Differentiate $3^x \sinh x$ w.r.t. x.
- 10. Integrate $\sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$ w.r.t. x.

PART - B

Answer any ten questions:

 $10 \times 2 = 20$

77<u>1</u>22.

11. If $a \equiv b \pmod{m}$ and a is a positive divisor of m, prove that

 $a \equiv b \pmod{n}$.

- 12. Without actual expansion show that $\begin{vmatrix} 43 & 1 & 6 \\ 35 & 7 & 4 \\ 17 & 3 & 2 \end{vmatrix} = 0.$
- 13. Is $G = \{0, 1, 2, 3\}$, under \otimes modulo 4 a group ? Give reason.
- 14. Find the equation of two circles whose diameters are x + y = 6 and x + 2y = 4 and whose radius is 10 units.
- 15. Find the area of the parallelogram whose diagonals are given by the vectors $2\hat{i} \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} \hat{k}$.

11

Code No. 35

Find the eccentricity of the ellipse (a > b), if the distance between the directrices is 5 and distance between the foci is 4.

- Solve $\cot^{-1} x + 2 \tan^{-1} x = \frac{5\pi}{6}$.
- . Find the least positive integer n for which $\left(\frac{1+i}{1-i}\right)^n = 1$.
- 1. If $y = (x + \sqrt{1 + x^2})^m$, prove that $(\sqrt{1 + x^2}) \frac{dy}{dx} my = 0$.
-). Show that for the curve $y = be^{\frac{x}{a}}$ the subnormal varies as the square of the ordinate y.
- 1. Evaluate $\int_{1}^{e} \log_{e} x \, dx$.
- 2. Find the order and degree of the differential equation

$$\left[1+\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^{\frac{3}{2}}=\frac{\mathrm{d}^2y}{\mathrm{d}x^2}.$$

PART - C

Answer any three questions:

- $3 \times 5 = 15$
- 23. Find the G.C.D. of a=495 and b=675 using Euclid Algorithm. Express it in the form 495(x)+675(y). Also show that x and y are not unique where $x, y \in z$.

[Turn over

12

24. Solve the linear equations by matrix method:

$$3x + y + 2z = 3$$

$$2x - 3y - z = -3$$

$$x + 2y + z = 4$$

- 25. a) On the set of rational numbers, binary operation * is defined t $a*b=\sqrt{a^2+b^2}$, $a,b\in R$, show that * is commutative an associative. Also find the identity element.
 - b) If a is an element of the group (G, *), then prove that $(a^{-1})^{-1} = a.$
- 26. a) Find the sine of the angle between the vectors $\hat{i} 2\hat{j} + 3\hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$.
 - b) Show that the vectors $\hat{j} + 2\hat{k}$, $\hat{i} 3\hat{j} 2\hat{k}$ and $-\hat{i} + 2\hat{j}$ form the vertices of the vectors of an isosceles triangle.
- II. Answer any two questions:

 $2 \times 5 = 10$

3

27. a) Derive the condition for the two circles

$$x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$$
 and

$$x^{2} + y^{2} + 2 g_{2}x + 2 f_{2}y + c_{2} = 0$$
 to cut orthogonally.

b) Show that the radical axis of the two circles

$$2x^2 + 2y^2 + 2x - 3y + 1 = 0$$
 and

 $x^2 + y^2 - 3x + y + 2 = 0$ is perpendicular to the line joining the centres of the circles.

- 28. a) Find the ends of latus rectum and directrix of the parabola $y^2 4y 10x + 14 = 0.$
 - b) Find the value of k such that the line x 2y + k = 0 be a tangent to the ellipse $x^2 + 2y^2 = 12$.
- 29. a) If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, show that x + y + z xyz = 0.
 - b) Find the general solution of $\tan 4\theta = \cot 2\theta$.
- III. Answer any three of the following questions: $3 \times 5 = 15$
 - 30. a) Differentiate $\tan x$ w.r.t. x from the first principle.
 - b) If $y = \tan^{-1} \left[\frac{2 + 3x^2}{3 2x^2} \right]$, prove that $\frac{dy}{dx} = \frac{2x}{1 + x^4}$.
 - 31. a) If $y = \cos(p \sin^{-1} x)$, prove that $(1-x^2)y_2 xy_1 + p^2 y = 0.$
 - b) Find the equation of the normal to the curve $y = x^2 + 7x 2$ at the point where it crosses y-axis.

{ Turn over

14

32. a) Integrate
$$e^{3x} \left(\frac{3 + \tan x}{\cos x} \right)$$
 w.r.t. x.

b) Find the angle between the curves $4y = x^3$ and $y = 6 - x^2$ at (2, 2).

33. a) If $x^m y^n = (x + y)^{m+n}$, prove that $x \frac{dy}{dx} = y$.

b) Integrate $\frac{1}{7-6x-x^2}$ w.r.t. x.

34. Find the area between the curves $y^2 = 6x$ and $x^2 = 6y$. 5

PART - D

Answer any two of the following questions:

 $2 \times 10 = 20$

6

3

35. a) Define hyperbola as a locus and hence derive the equation of the hyperbola in the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

b) Show that
$$\begin{vmatrix} b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2 \end{vmatrix} = 4a^2b^2c^2$$
.

36. a) If $\cos \alpha + 2 \cos \beta + 3 \cos \gamma = 0$, $\sin \alpha + 2 \sin \beta + 3 \sin \gamma = 0$,

show that i) $\cos 3\alpha + 8 \cos 3\beta + 27 \cos 3\gamma = 18 \cos (\alpha + \beta + \gamma)$

ii) $\sin 3\alpha + 8 \sin 3\beta + 27 \sin 3\gamma = 18 \sin (\alpha + \beta + \gamma)$.

b) Prove that $\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b} & \overrightarrow{b} + \overrightarrow{c} & \overrightarrow{c} + \overrightarrow{a} \end{bmatrix} = 2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$.

Read and download solved and unsolved latest university exam question papers

- a) The volume of a sphere is increasing at the rate of 4π c.c./sec. Find the rate of increase of the radius and its surface area when the volume of the sphere is 288π c.c.
- b) Find the general solution of $\sqrt{3}$ tan $x = \sqrt{2}$ sec x 1.
- a) Show that $\int_{0}^{\pi/4} \log (1 + \tan x) dx = \frac{\pi}{8} \log 2$.
- b) Solve the differential equation

$$\tan y \frac{\mathrm{d}y}{\mathrm{d}x} = \sin (x + y) + \sin (x - y).$$

PART - E

Answer any one of the following questions:

$$1 \times 10 = 10$$

- 9. a) Find the cube roots of $3 i\sqrt{3}$ and find their continued product. 4
 - b) Show that $(\overrightarrow{a} \times \overrightarrow{b})^2 = \overrightarrow{a}^2 \overrightarrow{b}^2 (\overrightarrow{a} \cdot \overrightarrow{b})^2$.
 - c) Find the length of the chord of the circle

$$x^{2} + y^{2} - 6x - 2y + 5 = 0$$
 intercepted by the line $x - y + 1 = 0$. 2

[Turn over

16

40. a) Evaluate
$$\int_{0}^{3} \frac{\sqrt{x+2}}{\sqrt{x+2} + \sqrt{5-x}} dx$$

4

b) Show that among all the rectangles of a given perimeter, the square has maximum area.

c) Differentiate sec $(5x)^0$ w.r.t. x.

9