Code No: 2420307

IV B. Tech II Semester Regular Examinations, April/May 2009
 ROBOTICS
 (Mechanical Engineering)

Time: 3 Hours
Max. Marks 80

Answer any FIVE questions All questions carry equal marks

1. (a) What is industrial automation? Compare hard automation with soft automation.
(b) Describe the advanced technological features and applications of modern robots?
2. (a) Briefly describe the various robot components.
(b) Define 'degrees of freedom'. How do you calculate the degrees of freedom of a robot manipulator?
3. (a) Find the transformation matrices for the following operations on the point $4 \hat{i}+9 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$. i) Rotate 45° about x -axis and then translate 3 units along z axis. ii) Translate -4 units along x -axis and rotate 60° about x -axis.
(b) State and prove the properties of a rotation matrix.
4. Obtain the kinematic equations using the homogeneous transformations for the spherical arm shown in Fig. 1.

Fig. 1

Fig. 2

Code No: 2420307

5. For the two-degree of freedom 2R manipulator shown in Fig. 2, assume that the inertia of the first moving link is negligible and that the second moving link is a slender homogeneous rod of mass ' m '. Obtain the dynamical equations of motion by recursive Newton-Euler method.
6. The trajectory of a particular joint is specified as follows: path points in degrees are $10,40,30$, and 15 . The duration of these segments should be 3,1 , and 2 seconds, respectively. The magnitude of the default acceleration at all blend points is 40 degrees/second ${ }^{2}$. Calculate all the segment velocities, blend times and linear times.
7. (a) Explain the following hydraulic actuators with neat sketches
(i) Linear actuator
(ii) rotary actuator
(b) Write about the direct-current (dc) and alternating current (ac) tachometers.[8]
8. (a) What are the features and capabilities that an industrial robot must possess to perform arc welding?
(b) Discuss the applications of a robot in automated assembly operations?

Code No: 2420307
IV B. Tech II Semester Regular Examinations, April/May 2009
ROBOTICS
(Mechanical Engineering)
Time: 3 Hours
Max. Marks 80

Answer any FIVE questions
 All questions carry equal marks
 $* * * * * * * *$

1. (a) Give the classification of robots by coordinate system and describe the features of each type.
(b) Discuss the advantages and disadvantages of using the robots in industry.[8]
2. (a) Dicuss briefly about the grippers and give its classification.
(b) Show the degrees of freedom for the following joints with the help of neat sketches
(i) Prismatic joint
(ii) Revolute joint
(iii) Cylindrical joint
(iv) Spherical joint
(v) Planar joint
(vi) Screw joint
3. (a) Determine a matrix T that represents a rotation of α angle about x-axis, followed by a translation of b units of distance along the z-axis, followed by a rotation of θ angle about the y -axis.
(b) Find the transformation matrices for the following operations on the point $-4 \hat{i}+8 \hat{j}+5 \hat{k}$. i) Rotate 45° about x-axis and then translate -5 units along y-axis.
ii) Translate 7 units along y-axis and rotate 60° about x-axis.
4. A spatial 3-R manipulator is shown in Fig. 1. Obtain the D-H parameters and the kinematic equations.

Code No: 2420307

Fig. 1

5. A two-link planar arm is shown in Fig. 2. Calculate the velocity of the tip of the arm as a function of joint rates.
6. (a) Compute the time law $\mathrm{q}(\mathrm{t})$ for a joint trajectory with velocity profile of the type $\dot{q}(\mathrm{t})=\mathrm{a}(1-\cos (\alpha \mathrm{t}))$ from $\mathrm{q}(0)=0$ to $\mathrm{q}(2)=4$.
(b) The values for the joint variables are: $q(0)=0, q(2)=2, q(4)=3$. Compute the cubic interpolating spline with zero initial and final velocities andaccelerations.[8]
7. (a) Give a brief classification of actuators used in robots.
(b) Explain the principal features of different position sensors.
8. (a) What are the general considerations in robot material handling? Explain? [8]
(b) What are technical and economic problems encountered in applying robots to arc welding?

IV B. Tech II Semester Regular Examinations, April/May 2009 ROBOTICS (Mechanical Engineering)

Time: 3 Hours

Max. Marks 80

Answer any FIVE questions
 All questions carry equal marks

1. (a) Give the classification of robots based on control system and describe their characteristic features.
(b) Describe the present day industrial applications of robots.
2. (a) Explain the selection criteria of end-effectors in robotics.
(b) Describe the common types of robot arms.
3. (a) Determine the homogeneous transformation matrix to represent the following the sequence of operations:
(i) rotation of 45° about x-axis
(ii) translation of 6 units along x - axis
(iii) translation of -3 units along z -axis
(iv) rotation of 30° about y-axis
(b) Find the rotation matrix corresponding to the set of Euler angles ZYZ and solve the inverse problem to determine the set of Euler angles corresponding to a given rotation matrix $R=\left[\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right]$
4. Find the direct kinematics equation of the four-link closed chain planar arm shown in Fig. 1. The two links connected by the prismatic joint are orthogonal to each other.[16]

Fig. 1
5. Determine the 3×3 jacobian that calculates linear velocity of the tool tip from the three joint rates for the manipulator shown in Fig. 2.

Code No: 2420307

Fig. 2
6. (a) Compute the time law $q(t)$ for a joint trajectory with velocity profile of the type $\dot{\mathrm{q}}(\mathrm{t})=\mathrm{k} \cos (\alpha \mathrm{t})$ from $\mathrm{q}(0)=0$ to $\mathrm{q}(2)=3$.
(b) Explain different methods used in robot programming for defining positions in space.
7. (a) Explain the operating principle of stepper motor used in robots.
(b) What is a resolver? Explain its operating principle.
8. (a) Discuss the considerations to be made while designing for robotic assembly. [8]
(b) Explain the robotic contact arc welding sensor system? [8]

IV B. Tech II Semester Regular Examinations, April/May 2009 ROBOTICS
(Mechanical Engineering)
Time: 3 Hours
Max. Marks 80

Answer any FIVE questions All questions carry equal marks

1. (a) Give the classification of robots by coordinate system and describe the features of each type.
(b) Describe the present day industrial applications of robots.
2. (a) Describe the degrees of freedom of a robot wrist with the help of a neat sketch. [8]
(b) Describe the common types of robot arms.
3. (a) Find the rotation matrix corresponding to the set of Euler angles ZYX [6]
(b) Compute the rotation matrix to represent a rotation of 90° about an arbitrary vector $\hat{a}=20 \hat{i}-15 \hat{j}+20 \hat{k}$.
(c) Verify that a rotation matrix R_{k} that describes the elementary rotation, θ about an axis \boldsymbol{k} follows the property, $R_{k}(-\theta)=R_{k}(\theta)$.
4. Solve the inverse kinematics for the two-link arm shown in fig. 1.

Fig. 1
5. (a) Find the inertia matrix of a right cylinder of homogeneous density with respect to a frame with origin at the center of mass of the body. Given the radius and the length of the cylinder as 'a' and ' L '.
(b) Obtain expressions for the linear and angular accelerations of a link i.
6. (a) Explain the differences between robot programming and traditional programming.
(b) A single cubic trajectory is given by $\theta(t)=10+90 t^{2}-40 t^{3}$ and is used over a time interval from $t=0$ to $t=2$ seconds. What are the starting and final positions, velocities and accelerations?
7. (a) Explain the characteristic features of pneumatic actuators used in robots. [8]
(b) Differentiate between incremental and absolute encoders.
8. (a) What are the general considerations in robot material handling? Explain?
(b) Explain how robotics can be applied to inspection automation?

