

B.Tech. Civil (Water Resources Engineering)

Term-End Examination December, 2006

ET-533(B): OPEN CHANNEL FLOW

Time: 3 hours Maximum Marks: 70

Note: Solve any **five** questions. All questions carry equal marks. Give neat and labelled sketches in support of your answer. Use of calculator is allowed.

- 1. (a) A circular channel has a diameter of 1.0 m, and runs a water depth of 0.75 m. Calculate the top width (T) of the free surface of water. Hence, find the angle θ that 'T' makes with the centre of this pipe section; give θ in degrees, minutes, and seconds.
 - (b) A trapezoidal section has b = 2 m, and a side slope of 1: 2. If the depth of flow, y = 1.5 m, calculate P and Z of this section.

7

2. (a) Explain what do you understand by the uniform flow and normal depth of flow.

10

14

- (b) Given a trapezoidal channel with a bottom width of 4.1 m, side slopes of 2:1, a longitudinal slope of 0.0015, and Manning's n=0.014. Find its normal discharge if normal depth is 1.9 m.
- (a) Determine the subcritical sequent depth of flow for a hydraulic jump with incoming water Froude number of 1.5 and supercritical flow depth of 1 m.
 - (b) Assuming Chezy's coefficient, C, to be constant in a wide rectangular open channel with $\alpha=1$, and the slope to be critical for a given Q, show that :

$$dy/dx = S_c.$$

4. A flow of $17.0 \text{ m}^3/\text{s}$ passes through a rectangular channel with the following parameters :

$$y_1 = 1.8 \text{ m}; b_1 = 4.0 \text{ m}$$

At a d/s section the width of the channel is reduced to 3.5 m, and the channel bed is raised by $\Delta Z = 0.05$ m. Find out the equation for determining the depth of flow at the d/s section.

5. Derive the géneral equation for wave velocity of a rapidly varied uniformly progressive flow:

14

$$V_{w} = \left[\frac{(A_{2}\overline{y}_{2} - A_{1}\overline{y}_{1})g}{A_{1}\left(1 - \frac{A_{1}}{A_{2}}\right)} \right]^{1/2} + (V_{1})$$

symbols carry their usual meaning.

For More Papers Visit http://www.IGNOUGuess.com

6. (a) With respect to a progressive wave, discuss its formulation as boundary value problem, and state the boundary conditions.

7

(b) Discuss wave celerity, length and period relationships with reference to wave propagation in an open channel.

7

7. Write short notes on any two of the following:

2×7=14

- (i) Dynamic equation of a uniformly progressive flow
- (ii) Method of characteristics
- (iii) Dam-break problem