Second Semester [MCA] – MAY-JUNE 2006

Paper Code: MCA-104 Paper ID: 44104

Subject: Theory of Computation

Time: 3 Hours

Maximum Marks: 60

Note: Answer question 1 and any four of the remaining six questions. Question 1 is of 20 marks and the rest are of 10 marks each.

Q. 1

- (a) Draw a finite automata that accepts sets of strings composed of zeros and ones which end with string 00.
- (b) Define an inherently ambiguous language. Give an example of such language.
- (c) Give a recursive formula for addition of two positive numbers using initial functions like zero, identify and successor functions. Hence show that addition of two positive numbers is computable.
- (d) Show that if M_1 is a Moore machine then their exists a corresponding Mealy machine.
- (e) Draw a NFA with three states that accepts L= $\{a^n : n \ge 1\} \cup \{b^k a^m : k \ge 0 \ m \ge 0\}$.

 $(4 \times 5 = 20)$

(5, 5)

(7, 3)

Q. 2

- (a) Show that the set of all strings in {0, 1} such that every third symbol is the same as the first symbol is a regular language.
- (b) Construct a context free grammar for the language $L=\{w \mid w \in \{0, 1\}^*, |w| \text{ is odd and w contains 0 in the middle of the string}\}.$
- Q. 3 Convert the following Context Free Grammar into GNF.
 - $S \rightarrow bA$ $S \rightarrow aB$ $A \rightarrow bAA$ $A \rightarrow aS$ $A \rightarrow a$ $B \rightarrow aBB$ $B \rightarrow bS$ $B \rightarrow b'$

Q. 4

- (a) Draw a Push Down Automata with minimum number of pushdown stores of the language $\{wcw^R | w \in \{0, 1\}^*\}$. Here w^R is reverse string of w.
- (b) Give a matrix grammar for the above language.

- Q. 5 (a) Define a Turing machine. Draw a Turing Machine that adds two positive integers.
 - (b) State and prove the pumping lemma for CFL. (5, 5)

Q. 6

- (a) Define Derivation Tree. Is it possible to draw a derivation tree for a string derived from context sensitive grammar? Give reasons for your answer. (5, 5)
- (b) Let '10011010011' is a symbol sequence. Apply the following prioritized Markov rules to convert the sequence such that all symbols following the pattern '1101' should be '0'.
 - $\begin{array}{l} (1) \ a0 \ \rightarrow 0a \\ (2) \ a1 \ \rightarrow 0a \\ (3) \ a \rightarrow \\ (4) \ 1101 \rightarrow 1101a \\ (5) \rightarrow \end{array}$
- Q. 7 Write short notes on any two of the following:-

Y PMP

- (a) L-System of grammar
- (b) Partial recursive function
- (c) Unsolvable class or problem.

(5, 5)

Maximum Marks: 60

End-Term Examination

Second Semester [MCA] – MAY 2004

Note: Attempt any six questions.

Paper Code: MCA-104

Subject: Mathematical Function of Computer Science

Time: 3 Hours

Q. 1 (a) Prove that any set S and its Power set P(S) are not equivalent. The proof should hold for arbitrary sets. 4 (b) Establish the following properties for finite sets 6 (i) if $|S_1| = n$ and $|S_2| = m$, then $|S_1 \cup S_2| \le n + m$ (ii) $|S_1 \times S_2| = |S_1| |S_2|$ (iii) $S_1 \cup S_2 - (S_1 \cap S_2) = S_2 S_2$ represents the compliment of S_2 (w.r.t. Universal set). (a) Minimize the states in the DFA given below :-5 Q. 2 0 0 q_2 0 0, 1qs 0, 1 (b) Show that if L is regular, so is the language L^{R} 0, 1 5 Q. 3 (a) Construct a DFA that accepts the language generated by the grammar 5 $S \rightarrow abA$ A→baB $B \rightarrow aA \mid bb$ (b) Construct a right-linear grammar for the language L ((aab * ab)*). 5 (a) Is the following language regular? Prove your answer: Q. 4 4 $L = \{a^n b^{\ell} : n \le \ell \}$ $L = \{w w^R v : v, w \in \{a, b\}^+\}$ (i) (ii)

(b) Determine whether or not the following are context free language or not: (i) $L = \{a^n ww^R a^n : n \ge 0, w \in \{a, b\}^*\}$ (ii) $L = \{a^n b^m : n = 2^m\}$ (iii) $L = \{a^n b^n c^j : n \le j\}$ 6

Q. 5 (a) Construct a non deterministic push down automata for the grammar. 5 $A \rightarrow aABB \mid aAA$ $A \rightarrow ABB \mid a$ $B \rightarrow bBB | A$

> (b) Design Turing machine to compute the following functions for x and y positive integers represented in unary. 5

(i)
$$f(x) = 3x$$

(ii) $f(x, y) = x-y; x > y$
 $= 0, x \le y$

	positive integers represented in unary.	3
	(i) $f(x) = 3x$ (ii) $f(x, y) = x-y; x > y$ $= 0, x \le y$	
Q. 6	(a) For $\sum = \{a, b, c\}$, find a Post system that generates the following la	anguages :
	(i) $L(a * b + ab * c)$ (ii) $L = (a^{n} b^{n} c^{n})$	5
	(b) Find an L- system that generates L (aa*).	5
0.7	(a) Show that every context sensitive language is recursive	5

context sensitive language is recursive. Q. / (OR)Prove that the Ackermann's function is not primitive recursive.

γ.····

(b) Prove the statement that if a language L_1 is NP-Complete and polynomial time reducible to L_2 , then L_2 is also NP-Complete. 5

Information about top MBA, Engineering, professional universities across India

Second Semester [MCA] – MAY 2003

Paper Code: MCA-104 Subject: Mathematical Foundations of Computer Science

Time: 3 Hours

Maximum Marks: 60

Time: 5	
	Note: Attempt any five questions. All questions carry equal marks.
Q . 1	 (a) Construct a DFA that accepts all strings on {0,1} that have three consecutive zeros. (b) Construct a DFA equivalent to following regular expression 10 + (0+11) 0 *1
Q. 2	Which one of the following language are regular sets. Prove your answer (a) Set of all strings with equal number of zeros and ones. (b) $\{x \le x^R \mid x, \le n \text{ (0 + 1)}^+\}$ (c) $\{0^m 1^n 0^{m+n} \mid m \ge 1 \text{ and } n \ge 1\}$
Q. 3	 (a) Give context free grammars generating the following sets. {aⁱb^jc^k i ≠ j or j ≠k} (b) Let G be the Grammar S→ a B b A A → a a S b AA B → b b S a BB For the string aaabbabbba find a
	 (i) Left most deviation (ii) Right most deviation (iii) Parse Tree
Q. 4	 (a) Construct a Push down Automata equivalent to the following grammar. S → a AA, A → aS b S a (b) With a suitable example describe pumping frame for context free language.
Q. 5	 (a) Prove that a two counter machine can simulate an arbitrary Turing machine. (b) Design a Turing machine to recognize the following languages {ww^R w is in (0+1)*}
Q. 6	 Which of the following properties of recursively enumerable sets are themselves recursively enumerable? Give reasons for your answer. (a) L contains Atleast two strings. (b) L is infinite (c) L is a context free language. (d) L = L^R
~ -	

(a) Prove that context free language are not closed under intersection.

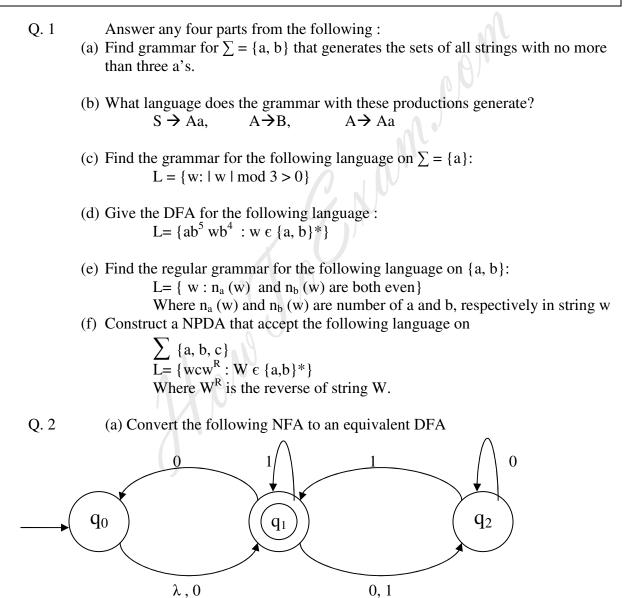
Q. 7

(b) Let G1 and G2 be grammars with G1 regular. Is the problem L(G1) = LG(2) decidable when

- (i) G2 is unrestricted
- (ii) G2 is regular

Q. 8 Write notes on following

- (a) Non-deterministic Turing Machine
- (b) Mealy Automation.


Second Semester [MCA] – JUNE 2001

Paper Code: MCA-104 Subject: Mathematical Foundations of Computer Science

Time: 3 Hours

Maximum Marks: 70

Note: Attempt five questions in all including Q. 1 which is compulsory. Q. 1. carry 30 marks and Q. 2 to Q. 8 carry 10 marks each.

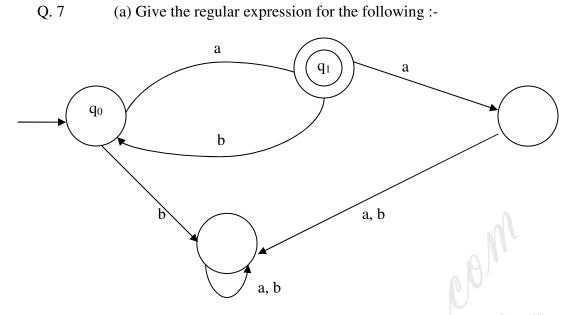
(b) Convert the grammar $S \rightarrow abSb / aa$ in Greibach Normal Form.;

Q. 3 (a) Construct a Turing machine that computes the function f(n, m) = n * m.

(b) Let $\sum = \{a, b\}$ Show that L = {w w^R : w $\in \sum^*$ } is not regular.

Q. 4 (a) What language is accepted by the machine

 $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \{a, b, \Pi\}, \delta, q_0, \Box, q_3\})$ With $\delta (q_0, a) = (q, a, R)$ $\delta (q_0, b) = (q_2, b, R)$ $\delta (q, b) = (q_1, b, R)$ $\delta (q_1, \Box) = (q_3, \Box, R)$ $\delta (q_2, b) = (q_2, b, R)$ $\delta (q_2, a) = (q_3, a, R)$


(b) What is Non-deterministic Turing Machine? Explain with suitable example.

Q. 5 (a) Remove all unit production from $S \rightarrow Aa \mid B,$ $S \rightarrow A \mid bb,$ $S \rightarrow a \mid bc \mid B$

(b) What is pumping leema? Discuss its use.

- Q. 6 Let the Grammar G be defined by : S→AB, B→ A | Sb, A → Aa | bB Given the Derivation tree for the following sequential form :
 (a) baSb
 - $(a) \ base (a) \ (a) \$
 - (b) baabaab(c) bBABb

Can you find an inherently ambiguous context free language? If yes give an example.

(b) Use induction on the size of S to Show that if S is a finite set then $|2^{S}| = 2^{|S|}$

Write short notes on any two of the following :-Q. 8

Henry .

- (a) Computational complexity
- (b) Unrestricted Grammars
- (c) Closure property for DFL's
- (d) Mealy Machines

Second Semester [MCA] – MAY 2005

Paper Code: MCA-104

Subject: Theory of Computation

Time: 3 Hours

Maximum Marks: 70

Note: Attempt five questions in all, including Q.1 which is compulsory.

Q. 1	Answer the following :-	20	
	 (a) Find the set of strings on T = {a, b } produced by the regular expression b*(a+b)*ab*. 		
	(b) Show that Class of CFL is not closed under complement and intersection	n	
	 (c) What class of language can be generated by grammar with only left con grammar in which each production is of the form α A → αB, where α ar belong to (n U ε)* ? 	text i.e.	
	(d) Prove that $\{awa \mid w \in \{a, b\}^*\}$ is a regular language.		
	(e) Give the matrix grammar for $\{a^n b^n c^n n > 0\}$.		
Q. 2	· · · · · · · · · · · · · · · · · · ·		
	What is bounded minimization?	5	
	(b) Give the following recursive function $A_{1}(0, z) = 1$	5	
	A $(0, y) = 1;$ A $(1, 0) = 2;$		
	A(1, 0) = 2, $A(x, 0) = x + 2$ for all $x \ge 2$ and		
	A(x+1, y+1) = A(x, y+1), y)		
	Determine A $(3, 2)$		
Q. 3	(a) State and prove the pumping lemma for Regular Language (RL).	5	
\mathbf{X}	(b) Show that $\{a^n b^n c^n n > 0\}$ is not a RL.	5 5	
		-	
Q. 4	(a) Define complexity of an algorithm. Show that every logarithmic fund	ction f(n)	
	$= \log_b n$ has the same order as $g(n) = \log_2 n$	5	
	(b) Define ε-closure set of states in a NFA. How is it used to convert a N	IFA with	
	ε-move into a DFA without a ε-move.	5	
Q. 5	(a) Define Instantaneous Description in a PDA. Draw a PDA for the lan	guage	
	$\{ww \mid w \in \{0, 1\}^*\}.$	7	
	(b) Describe the same PDA as a sequence of IDs.	3	
Q. 6	(a) Define the Turing machine. Draw a Turing machine that concatenate two		
C . •	strings in the alphabet {a, b}.	5	

(b) Show that proper subtraction is a total computable function. Draw a Turing machine for this. 5

10

(a) Check whether $G = (\{E\}, \{a, b, c, +, *\}, E, P)$ where P is given as Q. 7 $E \rightarrow E + E | E * E | a | b | c is ambiguous.$ 5 5 (b) Convert the grammar of part (a) into GNF.

Q. 8 Write short notes on any two of the following:-

- Post-independence Problem. (i)
- (ii) Universal Turing Machine.
- (iii)

How