4	W	_	1	7.	7	1	4

Printed Pages: 4 MCA – 206

(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID: 1471	Roll No.										

M. C. A.

(SEM. II) EXAMINATION, 2006-07

COMPUTER ARCHITECTURE & MICROPROCESSOR

Time: 3 Hours] [Total Marks: 100

Note: (1) Attempt all questions.

- (2) All questions carry equal marks.
- 1 Attempt any two parts of the following:
 - (a) Explain four possible hardware schemes that can be used in an instruction pipeline in order to minimize the performance degradation caused by instruction branching.
 - (b) (i) Determine the number of pipe clock cycles that it takes to process 200 tasks in a six-segment pipeline.
 - (ii) A nonpipeline system takes 50 ns to process a task. The same task can be processed in a six-segment pipeline with a clock cycle of 10 ns. Determine the speed up ratio of the pipeline for 100 tasks.
 - (c) Explain the following:
 - (i) Serial versus parallel processing
 - (ii) Parallelism versus pipelining.

V-1471] 1 [Contd...

- 2 Attempt any **two** parts of the following:
 - (a) Explain two techniques for enhancing the performance of computers with multiple execution pipeine.
 - (b) The following overlayed reservation table corresponds to a two-function (A,B) pipeline.

	t_{O}	t_1	t_2	t_3	t_4
S_1	A	В		A	В
S_2		A		В	A
S_3	В		AB		

- (i) List all four cross forbidden lists of latencies and corresponding combined cross-collision matrices.
- (ii) Draw the state diagram for the two functional pipeline.
- (c) Suppose that scalar operations take 10 times longer to execute per result than vector operations. Given a program which is originally written in scalar code:
 - (i) What are the percentage of the code needed to be vectorized in order to achieve the speed up factors of 2,4 and 6 respectively?
 - (ii) Suppose the program contains 15% of code that cannot be vectorized such as sequential I/o operations. Now repeat part (i) for the remaining code to achieve the three speed up factors.
- 3 Attempt any two parts of the following:
 - (a) In case of SIMD inter connection networks, explain the various static interconnection network topologies.
 - (b) Write down an O (n^2) algorithm and an O ($n \log_2 n$) algorithm for matrix multiplication and explain it.

V-1471] 2 [Contd...

(c) Prove or disprove that the Omega network can perform any shift permutation in one pass. The shift permutation is defined as follows: given $N=2^n$ inputs, a shift permutation is either a circular left shift or a circular right shift of k positions, where 0 k < N.

4 Attempt any **two** parts of the following:

- (a) Explain the functional structures of Loosely coupled Microprocessors and Tighty coupled Microprocessors.
- (b) Explain the following:
 - (i) List scheduling algorithm
 - (ii) Coffman and Graham algorithm.
- (c) (i) What are the major design issues towards the practical realization of a data flow computer?
 - (ii) What are the data flow graphs? Explain with the help of an example.

5 Attempt any **four** of the following:

- (a) What are tri-state devices and why are they essential in a bus-oriented system?
- (b) List three improved features of the 8085 over the 8080A microprocessor.
- (c) Define: Instruction cycle, machine cycle and T-state.
- (d) Write a program to:
 - (i) Clear the accumulator
 - (ii) Add 47H (use ADI instruction)
 - (iii) Subtract-92H
 - (iv) Add 64H

V-1471] 3 [Contd...

(v) Display the result after subtracting 92H and after ading 64H.

Specify the answers you would expect at the output ports.

- (e) Add the following five data bytes stored in memory locations starting 2060H and display the sum (the sum if less than FF. Use register B to store the partial sum). Write the program without using ADD M.
- (f) Write a 20 ms time delay subroutine using register pair BC. Clear the Z flag without affecting any other flags in the flag register, and returns to the main program.

