

Printed Pages: 8

MCA114

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 7304 2 Roll No. 0 9 2 9 0 1 4 0 5 1

M.C.A

(SEM I) ODD SEMESTER THEORY EXAMINATION 2009-10 DISCRETE MATHEMATICS

Time: 3 Hours]

[Total Marks: 100

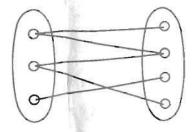
Note: Question - Paper carries three sections. Read the instruction carefully and answer accordingly.

SECTION - A

- 1 Attempt all parts of this section :
 - (i) This question contains 10 multiple choice 10×1=10 questions. Select the correct answer for each one as per instruction.
 - (a) Consider (X, Y, f) is a morphism, where
 - $f: X \to Y$. If image set of f is ϕ then f is
 - (i) an empty function
 - (ii) an identy function
 - (iii) a surjective function
 - (iv) an injective function
 - (b) Let I^+ be the set of positive integers and R be the relation on I^+ defined by xRy iff

JJ-7304]

[Contd...


 $2x \le y+1$. Then which ordered pair belongs to R

- (2, 2)
- (3, 2)
- (6, 15)
- (iv) (15, 6)
- Let I be the set of integers and R be the relation on I defined by x R y iff |x - y| = 2. Then the relation R on the set I is:
 - Reflexive
 - Symmetric
 - Transitive
 - None of above
- Let (X, *) be a group, where * is the multiplication operation on X. Then for any $x, y \in X$ which one is true?
 - (i) $(x^{-1}) = x$
 - (ii) $(x^{-1})^{-1} = x$
 - $(iii) \quad (xy)^{-1} = yx$
 - (iv) None of above
- The number of minterms in the k-map of 3 variable boolean function are :
 - (i)
 - (11) 6
 - 8
 - 16

JJ-73041

[Contd...

Graph shown below is an example of

- Regular graph
- Planar graph (ii)
- (iii) Bipartite graph
- (iv) None of above
- An undirected graph G = (V, E) is complete iff:
 - |E|=n
 - $|E|=n\;(n-1)$
 - $|E|=n\ (n-1)/2$
 - (iv) $|E| = \phi$.
- value of the formula truth (h) $(P \rightarrow Q) \lor \sim (P \leftrightarrow \sim Q)$ if P and Q are true will be
 - True
 - (ii) False
 - (iii) False and True both
 - (iv) None of above.

- (i) Which one of the following formulas is true?
 - (i) $(P \rightarrow Q) \Leftrightarrow (\sim P \land Q)$
 - (ii) $(P \rightarrow Q) \Leftrightarrow (\sim P \lor Q)$
 - (iii) $(P \leftrightarrow Q) \Leftrightarrow (P \rightarrow Q) \lor (Q \rightarrow P)$
 - (iv) $(P \wedge Q) \Leftrightarrow \sim (P \wedge Q)$
- (j) Suppose we have n distinct letters, then total number of words can be formed with those n letters are:
 - (i) n /
 - (ii) $n \cdot (n-1)$
 - (iii) $n \cdot (n-1) \cdot (n-2) \dots 3 \cdot 2 \cdot 1$
 - (iv) $n \cdot (n-1)/2$
- (ii) State True / False

 $5 \times 1 = 5$

[Contd...

- (a) For any finite set X, $\phi \in \rho(X)$ where $\rho(X)$ is the power set of X.
- (b) A graph is bipartite iff it contains no odd cycle.
- (c) Master theorem is used to solve the recurrences and return the solution in asymptotic bounds.
- (d) The time complexity of the function that multiply two matrices of order n can be less than $o(n^3)$.
- (e) Solution of the recurrence T(n) = 2T(n/2) + cfor $n \ge 2$ is $\theta(n \log n)$.

(iii) Fill in the blanks:

 $5 \times 1 = 5$

- (a) If S and T are two sets not necessary disjoint then $|S \cup T| = |S| + |T| \dots$
- (b) A binary tree that has **n** nodes may need an array of size up to _____ for its representation.
- (c) A regular graph with vertices of degree k is called as ______.
- (d) ${}^nC_n = \underline{\hspace{1cm}}$
- (e) $(P \rightarrow Q) \land P =$ _____.

SECTION - B

2 Attempt any three parts

 $10 \times 3 = 30$

- (a) Consider a relation $R = \{(x, y) \mid x, y \in I^+ \text{ and } (x-y) \text{ is divisible by 3}\}$. Find the set of equivalence classes generated by the elements of set I^+ .
- (b) Let G be an Abelian group and N is a subgroup of G. Prove that G/N is an Abelian group.
- (c) Consider a set $X = \{\alpha, \beta, \gamma\}$. Draw the Hasse diagram of the poset $(\rho(X), \subseteq)$, where $\rho(X)$ is the power set of X.
- (d) Prove that the formula $B \vee (B \rightarrow C)$ is a tautology.
- JJ-7304]

[Contd...

(e) A box is filled with three blue balls, three red balls and four yellow balls. Eight balls are taken out one at a time. In how many ways can this be done. (Assume that balls of same color are indistinguishable).

SECTION - C

Attempt any five parts selecting are from each $10\times5=50$ questions:

- 3 (a) For given sets $X = \{1, 2\}$, $Y = \{a, b, c\}$ and $Z = \{c, d\}$, find $(X \times Y) \cap (X \times Z)$.
 - (b) Prove the following property of Fibonacci numbers $f_1^2+f_2^2+\dots+f_n^2=f_nf_{n+1}; \qquad \forall \ n\geq 1$ where $f_0=0$, $f_1=1$ and $f_i=f_{i-1}+f_{i-2}$ for $i\geq 2$
- 4 (a) Let $f: G \to H$ be a group homomorphism, prove that Ker (f) is a normal subgroup of G.
 - (b) Prove that $(\{0, 1, 2, 3, 4\}, +_5, *_5)$ is a finite field, where $+_5$ is addition modulo 5 and $*_5$ is multiplication modulo 5 operators.

(a) For a given truth table obtain the simplified Boolean functions f_1 and f_2 is sum-of-products and products-of-sum forms.

\boldsymbol{x}	y	z	f_1	f_2
0	0	0	0	-1
0	0	1	1	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	0	0
1	1	1	0	1

- (b) Show that a bipartite graph is 2-colorable.
- 6 (a) Show that $B \rightarrow E$ is a valid conclusion drawn from the following premises:

$$A \vee (B \to D) \,, \quad {^{\sim}} C \to (D \to E) \,, \quad A \to C$$
 and ${^{\sim}} C \,.$

- (b) Prove that following argument is valid using predicate logic:
 - (i) All dogs are barking.
 - (ii) Some animals are dogs.
 - /:. Same animals are barking.
- (a) Solve the recurrence T(n) = 2T(n/2) + n for $n \ge 2$ and n is a power of 2.
- JJ-7304]

[Contd...

Show that the generating function for the Fibonacci number sequence is $\frac{x}{1-x-x^2}$. The Fibonacci numbers are defined by the recurrence $f_n=f_{n-1}+f_{n-2}$ for $n\geq 2$ where $f_0=0$ and $f_1=1$.

JJ-7304]

(b)

