GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-I Examination January 2010

Subject code: 110008 Subject Name: Mathematics – I

Date: 11 / 01 /2010 Time: 11.00 am – 02.00 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q1. (a) (i) Find the value of k so that the function given below is continuous at a given point x=2.

$$f(x) = \begin{cases} \frac{2^{x+2} - 16}{4^x - 16}, & x \neq 2\\ k, & x = 2 \end{cases}$$

- (ii) State Sandwich theorem and using it find $\lim_{x\to 0} g(x)$ if $3-x^3 \le g(x) \le 3\sec x$ **02** for all x.
- (b) (i) If f(x) and g(x) are continuous functions for $0 \le x \le 1$, could f(x)/g(x) possibly be discontinuous at a point in the interval [0,1]? Give reasons for your answer.
 - (ii) If $f:(a,b) \to \Re$ is differentiable at $c \in (a,b)$, then show that $\lim_{h \to 0^+} \frac{f(c+h) f(c-h)}{2h}$ exists and equals f'(c). Is the converse true?
- (c) (i) Using Mean Value Theorem, Prove $0 < \frac{1}{x} \log \left(\frac{e^x 1}{x} \right) < 1$, for x > 0.
 - (ii) For what values of a, m and b does the function

$$f(x) = \begin{cases} 3 & , x = 0 \\ -x^2 + 3x + a, 0 < x < 1 \\ mx + b & , 1 \le x \le 2 \end{cases}$$

satisfy the hypothesis of the Mean Value Theorem on the interval [0,2].

- Q2. (a) (i) Find the area of the region between the *x-axis* and the graph of $f(x) = x^3 x^2 2x, -1 \le x \le 2.$
 - (ii) Using Fundamental Theorem of Calculus find $\frac{dy}{dx}$ if $y = \int_{1}^{x^2} \cos t \, dt$.
 - (iii) Evaluate the integral $\int_{0}^{\infty} \frac{dx}{x^2 + 1}$.
 - (b) (i) Find the absolute maximum and minimum values of the function on the given 03 interval f(t) = |t 5|, $4 \le t \le 7$.
 - (ii) Find the Taylor's series expansion of $f(x) = x^3 2x + 4$, a = 2.

02

02

03

(iii) The geometric mean of two positive numbers a and b is the number \sqrt{ab} . Show that the value of c in the conclusion of the Mean Value Theorem for $f(x) = \frac{1}{x}$ on an interval of positive numbers [a,b] is $c = \sqrt{ab}$.

OR

- (b) (i) Test the convergence or divergence of the following series (ANY TWO) 04
 - **a.** $\sum_{n=0}^{\infty} \frac{2^n 1}{3^n}$ b. $\sum_{n=1}^{\infty} \frac{n}{e^{-n}}$ c. $\sum_{n=0}^{\infty} n! (x 4)^n$
 - (ii) Using Riemann Sum show that $\int_{a}^{b} x \ dx = \frac{1}{2} (b^2 a^2)$
- Q3. (a) Suppose that w = f(x, y), x = g(r, s) and y = h(r, s) then write the chain rule 05 for $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$. Also evaluate $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s$, z = 2r.
 - **(b) (i)** Show that $\int_{-\infty}^{\infty} f(x) dx$ may not equal to $\lim_{b \to \infty} \int_{-b}^{b} f(x) dx$.
 - (ii) If $u = \tan^{-1} \left(\frac{x^2 + y^2}{x y} \right)$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \sin 2u$
 - (c) Find the length of the curve $y = \int_{0}^{x} \sqrt{\cos 2t} \ dt$ from x = 0 to $x = \frac{\pi}{4}$.

OR

- Q3. (a) Let w = f(x, y, z) be a function of three independent variables, write the formal definition of the partial derivative for $\frac{\partial f}{\partial z}$ at (x_0, y_0, z_0) . Using this definition find $\frac{\partial f}{\partial z}$ at (1, 2, 3) for $f(x, y, z) = x^2 y z^2$.
 - (b) (i) Show that $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$

is continuous at every point except at the origin.

- (ii) Find $\frac{dw}{dt}$ if w = xy + z, $x = \cos t$, $y = \sin t$, z = t.
- (c) Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 2 and x = 0 about the line y = 2.
- Q4. (a) (i) Evaluate the integral $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} (x^2 + y^2) dx dy$ 03
 - Find the volume of the region that lies under the paraboloid $z = x^2 + y^2$ and above the triangle enclosed by the lines y = x, x = 0 and x + y = 2 in the xy plane.

- (b) Find the equations for tangent plane and normal line at the point (1,1,1) on the surface $x^2 + y^2 + z^2 = 3$.
- Find the area of the region that lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle r = 1.

OR

Q4. (a) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{z}} \int_{0}^{2\pi} (r^2 \cos^2 \theta + z^2) r \, d\theta \, dr \, dz$$
.

(b) (i) Integrate $f(x,y) = \frac{\ln(x^2 + y^2)}{\sqrt{x^2 + y^2}}$ over the region $1 \le x^2 + y^2 \le e$ by changing 04

to polar coordinates

- (ii) Find the derivative of $f(x, y, z) = x^3 xy^2 z$ at $P_0(1, 1, 0)$ in the direction of $\overrightarrow{v} = 2\overrightarrow{i} 3\overrightarrow{j} + 6\overrightarrow{k}$.
- (c) Find the volume of the prism whose base is the triangle in xy plane bounded by the x axis and the line y = x and x = 1 and whose top lies in the plane z = f(x, y) = 3 x y.
- Q5. (a) Integrate $f(x, y, z) = x + \sqrt{y} z^2$ over the path $C = C_1 \cup C_2$ from (0, 0, 0) to (1, 1, 1) with

$$C_1: r(t) = t \vec{i} + t^2 \vec{j}, \ 0 \le t \le 1$$

$$C_2: r(t) = \overrightarrow{i} + \overrightarrow{j} + t \overrightarrow{k}, \ 0 \le t \le 1$$

State Green's theorem and also evaluate the integral $\oint_C (6y+x)dx + (y+2x)dy$ 05

where C: The circle $(x-2)^2 + (y-3)^2 = 4$.

(c) Trace the curve $r^2 = a^2 \cos 2\theta$.

OR

- Q5. (a) Use Green's theorem to evaluate the integral $\oint_C (y^2 dx + x^2 dy)$ where C: The triangle bounded by x = 0, x + y = 1, y = 0.
 - (b) Find the flux of F = yz $\overrightarrow{j} + z^2$ \overrightarrow{k} outward through the surface S cut from the cylinder $y^2 + z^2 = 1$, $z \ge 0$, by the planes x = 0 and x = 1.
 - (c) Use Stoke's theorem to evaluate $\int_C F \, dr$ if **04**

 $F = (x+y) \stackrel{\rightarrow}{i} + (2x-z) \stackrel{\rightarrow}{j} + (y+z) \stackrel{\rightarrow}{k}$ and C is the boundary of the triangle (2,0,0), (0,3,0) and (0,0,6).
