

## ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 OBJECT ORIENTED PROGRAMMING WITH C++ SEMESTER - 2

| ime | : 3 H                    | ours   |                                                           | [Full Marks: 70 |
|-----|--------------------------|--------|-----------------------------------------------------------|-----------------|
|     |                          | :      | GROUP - A                                                 |                 |
|     | •                        |        | ( Multiple Choice Type Questions )                        |                 |
|     |                          | · .    |                                                           |                 |
| . • | Choo                     | ose th | e correct alternatives for any ten of the following:      | 10 × 1 = 10     |
|     | i)                       | Con    | structors can be                                          |                 |
|     |                          | a)     | virtual                                                   |                 |
|     | - 1.<br>- <u></u> 1.<br> | b)     | return type                                               |                 |
|     |                          | c)     | inherited                                                 |                 |
|     |                          | d)     | generated by default if not provided by the programmer.   |                 |
| •   | ti)                      | Whi    | ch operator of the following cannot be overloaded?        |                 |
|     |                          | a)     | → <b>b) ?:</b>                                            |                 |
|     |                          | c)     | d) delete.                                                |                 |
|     | iii)                     | Priva  | ate member of the super-class                             |                 |
|     |                          | a)     | is both extended as well as accessed inside sub-class     |                 |
|     |                          | b)     | is extended but cannot be accessed inside sub-class       |                 |
|     |                          | c)     | is not extended but can be accessed inside sub-class      |                 |
|     |                          | d)     | is not both extended as well as accessed inside sub-class | s.              |

II-222522 (5)

| CS/MCA | / CHAMES. |  |
|--------|-----------|--|



| iv)           | The        | difference between new operator and malloc() is that  | en e |
|---------------|------------|-------------------------------------------------------|------------------------------------------|
|               | a)         | more memory space is allocated in case of new oper    | rator                                    |
|               | <b>b</b> ) | malloc() allocates memory space dynamically           |                                          |
|               | <b>c</b> ) | new can be overloaded                                 |                                          |
|               | d)         | malloc() can allocate memory space for any type of c  | lata.                                    |
| v)            | Wha        | at will be the output of the following piece of code? |                                          |
|               | #inc       | clude <iostream.h></iostream.h>                       |                                          |
|               | #defi      | fine a 2;                                             |                                          |
|               | int m      | nain()                                                |                                          |
|               | {          |                                                       |                                          |
|               |            | int j = 3;                                            |                                          |
|               |            | int i = a+j++;                                        |                                          |
|               |            | cout< ;</td <td></td>                                 |                                          |
|               |            | return 0;                                             |                                          |
|               | }          |                                                       |                                          |
|               | a)         | Compilation error b) 6                                |                                          |
|               | <b>c</b> ) | 5 d) 4.                                               |                                          |
| vi)           | The        | major goal of inheritance in C++ is to                |                                          |
| ٠.            | a)         | to facilitate the conversion of data types            |                                          |
| · · · · · · . | <b>b</b> ) | to help modular programming                           |                                          |
|               | <b>c</b> ) | to facilitate the reusability of code                 |                                          |
|               | d)         | to hide the details of base classes.                  |                                          |
|               |            |                                                       |                                          |

11-222522 (5)

## CS/MCA/SEM-2/MCA-205/08



| <ul> <li>int sum (int x, int y) { // }</li> <li>a) int sum (int x, int y, int z) { }</li> <li>b) int sum (float x, float y) { }</li> <li>c) int sum (int x, int y, float z) { }</li> <li>d) all of these.</li> <li>viii) The function show () is a member of the class A &amp; obj is an obj pointer to A. Which of the following are valid access statement a) obj.show();</li> </ul> | Delow ?                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| <ul> <li>b) int sum (float x, float y) {}</li> <li>c) int sum (int x, int y, float z) {}</li> <li>d) all of these.</li> <li>viii) The function show () is a member of the class A &amp; obj is an objointer to A. Which of the following are valid access statements.</li> </ul>                                                                                                       |                                           |
| <ul> <li>c) int sum (int x, int y, float z) {}</li> <li>d) all of these.</li> <li>viii) The function show () is a member of the class A &amp; obj is an objointer to A. Which of the following are valid access statements.</li> </ul>                                                                                                                                                 |                                           |
| d) all of these.  viii) The function show () is a member of the class A & obj is an ol pointer to A. Which of the following are valid access statement                                                                                                                                                                                                                                 |                                           |
| viii) The function show () is a member of the class A & obj is an object to A. Which of the following are valid access statement                                                                                                                                                                                                                                                       |                                           |
| pointer to A. Which of the following are valid access statement                                                                                                                                                                                                                                                                                                                        |                                           |
| a) obj.show();                                                                                                                                                                                                                                                                                                                                                                         |                                           |
| All V                                                                                                                                                                                                                                                                                                                                                                                  |                                           |
| <ul><li>b) ptr→show();</li><li>c) (*ptr).show();</li></ul>                                                                                                                                                                                                                                                                                                                             |                                           |
| c) (*ptr).show(); d) all of these.                                                                                                                                                                                                                                                                                                                                                     |                                           |
| ix) Consider the declarations:                                                                                                                                                                                                                                                                                                                                                         |                                           |
| char a; const char aa='h';                                                                                                                                                                                                                                                                                                                                                             |                                           |
| char *na;                                                                                                                                                                                                                                                                                                                                                                              | er en |
| const char *naa;                                                                                                                                                                                                                                                                                                                                                                       |                                           |
| Which of the following statements is/are illegal?                                                                                                                                                                                                                                                                                                                                      |                                           |
| a) Only I and II b) Only II and III                                                                                                                                                                                                                                                                                                                                                    |                                           |
| c) Only I and III d) All are illegal.                                                                                                                                                                                                                                                                                                                                                  |                                           |

II-222522 (5)

| CE       | MC/ | /6 | EM-9 | /140 | <b>:</b> A.9 | M   | /ne |
|----------|-----|----|------|------|--------------|-----|-----|
| <b>V</b> |     |    | -    |      | -            | NU. | /vo |

| profession of the last of the |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ì |
| - CHECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 2 \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ì |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |

| <b>x</b> ) | class A : public B, public C                                                              |               |                                | Artinia Salahari<br>Karangan |
|------------|-------------------------------------------------------------------------------------------|---------------|--------------------------------|------------------------------|
|            | is an example of what kind of                                                             | inheritance   | <b>?</b>                       |                              |
| •          | a) single                                                                                 | <b>b</b> )    | multiple                       |                              |
|            | c) multilevel                                                                             | d)            | hierarchical.                  |                              |
| xi)        | A class has one data member<br>program that declares 10 obj<br>data member and method men | jects of this | s class. The numbers of ad     |                              |
|            | a) 10 and 1                                                                               | <b>b</b> )    | 10 and 10                      |                              |
|            | c) 0 and 10                                                                               | d)            | none of these.                 |                              |
| xii)       | Dynamic binding is necessary                                                              | when we re    | efer to derived class object w | rith                         |
|            | a) global pointer                                                                         | <b>b</b> )    | derived class pointer          |                              |
|            | c) non-pointer variable                                                                   | d)            | base class pointer.            |                              |
|            | G                                                                                         | ROUP - B      |                                |                              |
| *          | ( Short Ansv                                                                              | ver Type Q    | uestions )                     |                              |
|            | Answer any                                                                                | three of the  | following.                     | 3 × 5 = 15                   |
| Wha        | t do you mean by exception ? W                                                            | rite down tl  | ne purposes of the following   | keywords:                    |
| ĵ)         | try                                                                                       |               |                                |                              |
| ti)        | catch                                                                                     | U             |                                |                              |
| iii)       | throw.                                                                                    |               |                                | 2 + 3                        |
| * T        |                                                                                           |               |                                |                              |
|            | can constructors not be virtua<br>in your answer.                                         | i ? Can des   | structor be virtual? Give re   | easons and 5                 |
|            | t do you mean by a reference va<br>ble and pointer? Explain with e                        |               | there any difference between   | n reference 3 + 2            |
| •          | down the differences between                                                              |               |                                |                              |
|            | r (non-object-orientéd) programi                                                          |               |                                | 5                            |
| What       | are friend functions? What are                                                            | their impli   | cations on information hidin   | g. 5                         |
|            |                                                                                           |               |                                |                              |

II-222522 (5)

3.

6.



## GROUP - C

## (Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$ 

- 7. a) What is stream?
  - b) What is "Ellipsis"?
  - c) Write a C++ program to write into a file named 'test.txt' the text 'Department of MCA 1<sup>st</sup> year, 2<sup>nd</sup> Semester" and without closing the file, print the content of 'test.txt' on the console.
  - d) Illustrate the use of nested try block. Is it necessary that number of catch blocks should be equal to the number of try blocks? Justify your answer with proper example. 2+2+6+(3+2)
- 8. What is operator overloading? Why is it necessary to overload an operator? Create a class Complex that will contain complex numbers. Use operator overloading to create addition, subtraction and multiplication operators which will operate on Complex.

2 + 3 + 10

- 9. What do you mean by virtual base class? What do you mean by polymorphism? How is the polymorphism achieved at run time in C++? What is late binding? Write a program to concatenate two strings of two different objects using operator overloading with constructor.
  2 + 2 + 4 + 2 + 5
- 10. How can we distinguish between prefix and postfix nature while overloading the unary ++ operator? Write a program to overload the new operator. When do we use the protected visibility specifier to a class member? What are the advantages of using 'new' operator over malloc()? What is runtime polymorphism?

3 + 5 + 3 + 2 + 2

11. What is the specialty of a template function? Give examples. Design template class to implement a queue. What is an Exception? How are these handled in C++?

4 + 6 + 2 + 3

END

П-222522 (5)