CS/MCA/SEM-2/MCA-204/00

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 DATABASE MANAGEMENT SYSTEM - I SEMESTER - 2

	*			
Time: 3 Hours]		and the second s	7 1 1	 [Full Marks : 70
THIE: O HOURS				(

GROUP - A

(Multiple Choice Type Questions)

		e correct alternatives for any t							
i)	The	The set of permitted values for each attribute is called its							
	a)	attribute set	b)	attribute range					
	c)	domain	d)	group.					
ii)		operation on certain relation cted attributes of X, such an o		roduces Y such that Y contains only					
•	a)	projection	b)	selection					
	c)	union	d)	difference.					
iii)	A ta	ble can be logically connected	to anoth	her table by defining a					
	a)	a hyperlink	b)	common field					
	c)	primary key	d)	foreign key.					
iv)	DDI	. stands for							
	a)	data-dictionary language	b)	dictionary defined language					
•	c)	data defined language	đ)	data definition language.					
v)	Wha	at is the cardinality of a table	with 000	rows & 10 columns ?					
	a) ု	10	b)	100					
	c)	1000	d)	10000.					
vi)	Wha	at operator performs pattern r	natching	g in SQL ?					
	a)	except	b)	intersect					
;	c)	like	d)	all of these.					
	-•								

II-222511 (4)

vii)	Give	en relations R (w, x) and \$ (y, z)	. The re	sult of			
		SELECT DISTINCT w, x	·				
		FROM R, S	*				
-	is gu	uaranteed to be same as R, if	· · ·				
	a)	R has no duplicates and S is	non-en	apty			
	b)	R and S have no duplicates	1				
	c)	S has no duplicates and R is	non-en	apty			
	d)	R and S have same number of	f tuple:	s.			
viii)	R =	(A, B, C)	i Na senga	· · · · · · · · · · · · · · · · · · ·			
	F = {	(A → B					
	4	B → C}					
	R is	in BCNF					
	a) True b) False.						
ix)		(J, K, L)					
		IJK → L					
		L → K}					
		The candidate keys are					
	a)	J and K	b)	JK			
•							
1	.c)	Only J	d)	JK and JL.			
x)		itional schema for relationship					
	a)	many-to-many relationship	b)	many-to-one relationship			
	c).	one-to-many relationship	d)	none of these.			
xi)	An a	attribute of one table matching	the pri	mary key of another table is called as			
	a)	secondary key	b)	foreign key			
	c)	candidate key	d)	surrogate key.			
xii)	Trur	ncate is	;				
	a)	DDL command	bì	DML command			

d)

not at all SQL command.

U-222511 (4)

DCL command

3 x 15 = 45

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. currywratty database for the agreduling of

and he moorled as the single

 $3 \times 5 = 15$

What is FD?

- What is the highest NF of each of the following relations? b)
- R1 (A, B, C) with FDs are $A \rightarrow B$, $A \rightarrow C$, $C \rightarrow B$
 - R2 (A, B, C, D) with FDs are $A \rightarrow BC$, $CD \rightarrow B$. ii)

Define: Super key, candidate key, primary key, foreign key and alternate key.

5

- Define entity integrity and referential integrity. Explain the difference between them through example.
- Find out closure of attribute set (AG) i.e., (AG)+ in the relational schema R and set of 5. functional dependencies F as given below:

R = (A, B, C, G, H, I)

 $F = \{A \rightarrow B\}$

 $A \rightarrow C$

CG → H

CG → I

 $B \rightarrow H$

Is (AG) a super key of R?

Consider the relation given below: 6. .

SCHEDULE (StdId, ClassNo, StdName, StdMajor, ClassTime, ClassRoom, Instructor)

Find the names of employees whose salary is greater

der the following relational scheme

Following are functional dependencies of SCHEDULE: her of employees in each department

StdId → StdName

StdId → StdMajor of redman treathings in approlate its to seem a off velgati

ClassNo → ClassTime and brooms and organization to deline and but

ClassNo → ClassRoom

ClassNo → Instructor

What is the highest normal form of this relation?

5

II-222511 (4)

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) Consider a university database for the scheduling of classrooms for final exams.

 This database could be modeled as the single entity set exam, with attributes course_name, section_number, room_number and time. Alternatively, one or more additional entity sets could be defined, along with relationship sets to replace some of the attributes of the exam entity set, as
 - i) course with attributes name, department and c number
 - section with attributes s_number and enrollment and dependent as a week entity set on course.
 - iii) room with attributes r_number, capacity and building.

Draw an E-R diagram for the above problem.

Reduce the E-R diagram into relational schema by defining all the constraints and assumptions.

- Explain with example the concept of reducing to relational schema in case
 specialization and generalization.
- 8. Consider the following relational schema:

EMP (EmpNo, EmpName, City, Sal, DeptNo)

DEPT (DeptNo, DeptName)

Write down the following queries in SQL:

5 x 6 HEDULE (Sidil, Classic, Sidilame)

(A) 1182828-M

is (AG) a super key of K

Consider the relation given below

What is the highest normal form of this relation

- i) Find the names and cities of all employees working for the "Research" department
- ii) Display the number of employees in each department
- iii) Display the names of all employees in department number 20
- iv) Find the names of employees who have the second highest salary
- v) Find the names of employees whose salary is greater than anyone's salary of department 10.

II-222511 (4)

MCA/SEM-2/MCA-204/08

- 9. a) What is the difference between primary and secondary storage?
 - b) How does multilevel indexing improve the efficiency of searching an index file?
 - c) How does B-tree differ from a B+tree?
 - d) Why is a B+tree usually preferred as an access structure to a data file?

3+3+.5+4

10. Consider the following relational schema:

STUDENT (Id, Name)

ENROLLEDIN (Id, Code)

SUBJECT (Code, Lecturer)

Write down the following query expressions:

3 x 5

- i) Display the names of students enrolled in the subjects having codes cp 1500 or cp 3010. (Relational Algebra)
- ii) Display the names of all the students enrolled in the subjects having codes cp 1500. (Tuple Relational Calculus)
- Display the names of students who are taking a subject not taught by Roger.

 (Relational Algebra)
- 11. a) What is a schedule?
 - b) What is the difference between conflict equivalence and view equivalence?
 - c) Describe the growing phase and shrinking phase with example of the two phase locking protocol.
 - d) Describe the wait-die and wound-wait protocols for deadlock prevention.

2+4+4+5

END