

engineering & management examinations, december - 2008 STATISTICS AND NUMERICAL TECHNIQUES SEMESTER - 3

Time	e : 3 H	ours					Full	Marks : 7 0
			Graph sh	eets are provid	ed at the	end of the bo	oklet.	
					OUP – A			
	Ola a a		The state of the s	Multiple Choi		Agency Company	,	
1.	Choo			rnatives for any		and the second second	00	$0 \times 1 = 10$
		a)	undiased coll $\frac{1}{2}$	ns are tossed. \	what is the	$\frac{1}{3}$		neads r
•		c)	$\frac{1}{4}$		d)	O.		
		If x then		metic mean of $(-\bar{x}) = 0$.	X		by f_i ($i = 1, 2$	
		a)	True		b)	False.	一次。 一次,《数数》(28)	
	: 110)			dard Error of cement ($\sigma = s$.	–			
	• /	a)	$\frac{\sigma}{\sqrt{n}} \frac{\sqrt{N-n}}{\sqrt{N-1}}$		b)	$\frac{\sigma}{\sqrt{n}}$		
		c)	$\sigma \frac{\sqrt{N-n}}{N-1}$		d)	$\sigma \frac{N-n}{\sqrt{N-1}} \cdot \frac{N-n}{\sqrt{N-1}}$		
	(vt	Wha	at is the pr	obability tha	a leap	year selecte	ed at randon	ı contains
		53 S	Sundays ?		b)	2 366		
	•	c)	2 7		d)	$\frac{3}{7}$.		

ECA/S	BEM-3/M(MCA)-301/08/(09)	4	and a profession	
v)	For two events A, B, P(B/	A) • A San		
	a) P(AB)/P(B)	b) P(AB	PA	
, x	c) P(B)/P(A)	d) P(A)	* P(B).	
vi)	The number of significant i	igures in 0.0128742 is		
5, 1	a) five	b) six		
	c) seven	d) three.		
vii)	If $f(x)$ is a polynomial of $f(x)$	legree n, the nth order d	lifference is a consta	ınt.
91 V	a) True	b) False.	-0	
viii)	Relation between mean ar	d variance of a rando	m variable following	g binomia
	a) Mean = Variance	b) Mean	> Variance	
	c) Mean < Variance	d) Mean :	Variance 2.	
ix)	For a distribution, mean, redistribution is the most pos		und to be equal. Wh	nat kind (
	a) Binomial	b) Poissor	$oldsymbol{i}_{i_1,\dots,i_{m+1}}^{i_{m+1}}$, where $i_{i_1,\dots,i_{m+1}}^{i_{m+1}}$, $i_{i_1,\dots,i_{m+1}}^{i_{m+1}}$	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c) Normal	d) Geome	tric,	
x)	The truncation error in Con	iposite Trapezoidal Rule	e is	
	a) h ²	b) h ³		
	c) h ⁴	d) none o	f these.	
xi)	If 'a' is the actual value ar	d 'e' is the estimated v	value, the formula f	or relativ

error is

a/e a)

(a-e) Le b)

c)

| a-e | / e.

xii) If the random variable X has p.d.f. $f(x) = \frac{1}{2}x$, $0 \le x \le 2$, find the mean value of X.

a) $\frac{4}{3}$

b) 7

c) $\frac{5}{4}$

d) $\frac{2}{3}$

xiii) The relation between shift operator 'E' and forward difference operator 'Δ' is given by

a) $\Delta = 1 + E$

b) $E=1+\Delta$

c) $E = \Delta$

d) $E = \Delta + 2$.

xiv) When the variance of a random variable is $\frac{2}{3}$, the Var (3X + 5) is

a) 6

b) 2

c) 11

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Find the missing frequencies in the following frequency distribution, when it is known that A.M. = 11.09 and total frequency = 60:

Class limits :	9-3 - 9-7	9-8 - 10-2	10.3 - 10.7	10-8 - 11-2	11-3 - 11-7	11-8 - 12-2	12-3 - 12-7	12-8 - 13-2
Frequency:	2	5	f_3	f4	14	6	3	1

- 3. Evaluate $\int_{0}^{1} (4x-3x^{2}) dx$ taking 10 intervals, by Simpson's one-third rule.
- 4. Using method of false position, find the real root of the equation

 $f(x) = x^3 - 3x - 5 = 0 \text{ upto 4 decimal places.}$

5. If the third differences are constant, find y_6 if $y_0 = 9$, $y_1 = 18$, $y_2 = 20$, $y_3 = 24$.

33131 (4/12)

CS/MCA/SEM-3/M(MCA)-301/08/(09)

6

6. Find y at 0.45 from the following data:

x:	0.4	0.5	0.6	0.7	0.8
Y:	1.58	1.79	2.04	2.32	2.65

Fit a linear equation to the following data:

x:	2	4	6	8	10
Y:	2.3	2.6	2.9	2.10	2.12

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

33131 (4/13)

- 8. a) There are two boxes, the first containing 3 white and 7 black balls and the second containing 7 white and 3 black balls. One box is chosen at random and from it 2 balls are drawn without replacement. Find the probability that both the balls are white. Also, given that both the balls are white, find the conditional probability that the first ball was chosen.
 - b) Prove that in the limiting case, Binomial distribution tends to Poisson distribution.
 - c) Prove that for two events E_1 and E_2 ,

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2).$$
 5+5+5

- 9. a) Prove that $P(A^c) = 1 P(A)$, where A^c implies complement of the event A.
 - b) Find the probability of getting exactly two even numbers when a balanced die is rolled thrice.
 - c) Prove that for a Binomial distribution, mean is greater than variance. 4 + 5 + 6

33131 (4/12)

CS/MCA/SEM-3/M(MCA)-301/08/(09)

7

10. a) The number of telephone calls received in 245 successive one minute intervals at an exchange are shown in the following frequency distribution:

Number of calls :	0	1	2	3	4	5	6	7	Total
Frequency:	14	21	25	43	51	40	39	12	245

Evaluate the mean and mode.

b) Compute the Standard Deviation from the following distribution of marks obtained by 90 students:

Marks:	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69	70 - 79	80 - 89	90 - 99
No. of students :	5	12	15	20	18	10	6	4

c) Find the median and median class of the following data given below:

Class boundaries :	15 - 25	25 - 35	35 - 45	45 - 55	55 - 65	65 - 75
Frequency:	4	11	19	14	0	2

15

1. a) Given:

x:	1	ź	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

Construct the difference table and compute (i) f(1.5) and (ii) f(7.5).

b) Given the following data, find f(x) assuming it to be a polynomial of three degree in x.

x:	0	1	2	3
f(x)	. 1	2	11	34

c) Find a positive root of $x + \ln x - 2 = 0$, by Newton-Raphson method, correct to six significant figures.

33131 (4/12)

12. a) Solve the following system:

$$2x_1 - 3x_2 + 4x_3 = 8$$

$$x_1 + x_2 + 4x_3 = 15$$

$$3x_1 + 4x_2 - x_3 = 8$$

by LU-factorization, method.

b) Solve by Euler's modified method, the following differential equation for x = 0.02, by taking step length h = 0.01,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + y, \ y = 1 \text{ when } x = 0.$$

c) Find the positive roots of the equation $x^3 - 3x + 1.06 = 0$, by method of bisection, correct to three decimal places.

END