1.

ENGINEERING & MANAGEMENT EXAMINATIONS. JUNE - 2008 MECHANICAL SCIENCE:

SEMESTER - 2

Time: 3 Hours 1		Full Marks: 70

GROUP - A

(h.ultiple Choice Type Questions)

		ne correct alternatives for the						
ij	Wh	ich of the following is an inte	nsive the	rmodyn mie property?				
	a)	Voiume	b)	Temperature				
	c)	Mass	d)	Energy.				
ti)	For	For an inteversible process, change in entropy is						
	a)	greater than dQ/T	b)	less than dQ/T				
	c)	zero	d)	equal to a O/T.				
iii)	During throttling, which of the following quantity does not change?							
	a)	Internal energy	b)	Entropy				
	c)	Pressure	d)	Enthaipy				
iv)	Wox	k done in a free expansion is	s .					
	a)	Positive	b)	Negative				
	c)	Zero	d) ·	Maximum.				
v)	A c ₅	cie with constant volume h	eat addit	ion and constant volume heat rejection				
	is							
	a)	Otio cycle	b)	Diesel cycle				
	c)	Joule cycle	d)	Rankine cycle.				
vi)	Trip	le point of a pure substance	is a point	at which				
	a)	liquid and vapour coexist						
	b)	solid and vapour coexist		en de la companya de La companya de la co				
	c)	solid and liquid coexist						
	d)	all three phases coexist.		i kirin da kabupatèn da kabupatèn per				

II-222833 (3)

	Ĺ
of miles	5
d San	t
	ď

- Barnoulli's equation deals with the conservation of
 - 3
- Mass Mo.nentum
 - c) Energy

- Continuity equation is based on the principle of conservation of
 - ¿.) Mass

Momentum

C) Energy

- Entropy.
- A Pitot tule is used for measuring
 - "State of fluid with the same of the
- Velcaty of fluid
- Density of fluid **c**)
- Viscosity of fluid.
- Dynamic viscosity has dimensions of

ML-1 T-2 c)

Short Answer Type Questions)

Answer any three of the followins.

3 x 5 = 1

- State the first law of thermodynamics for a closed system undergoing a cycle is 2. process.
- liminain thermodynamic equilibrium. 3,
- The fluid flow is given by $\overline{V} = x^2 y \hat{t} + y^2 z (2 xyz + yz^2) \hat{k}$. Show that this is a 4. of possible steady incompressible flow. Calculate the velocity and acceleration (2, 1, 3).
- Draw a block diagram of vapour compression refrigeration cycle and also Traw 5, corresponding P-V and T-S plots.
- Daive Barnoulli's equation form first principles, stating the assumptions. b.
- Dolain PMM-1 and PMM-2.

D-228333 (8)

CS/B.Tech/SEM-2/ME-201/06

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

3 × 15 = 45

- 8. a) Which is a more effective way of increasing the efficiency of a Carnot engine to increase source temperature (T_1), keeping sink temperature (T_2) constant or to decrease T_2 keeping T_1 constant.
 - b) State Classius inequality.
 - c) A mass of m kg of liquid (specific heat = C_p) at a temperature T_1 is mixed with an equal mass of the same liquid at a temperature T_2 ($T_1 > T_2$) and the system is thermally insulated. Show that the entropy change of the universe is given by $2mC_p l\left(\frac{T_1 + T_2}{\sqrt{T_1 T_2}}\right)$ and prove that this is necessarily positive. 3 + 2 + 10
- 9. a) Derive the expression for efficiency of an Otto cycle and show the process on p-V and T-s planes.
 - b) For the same compression ratio, explain why the efficiency of Otto cycle is greater than that of Diesel cycle.
 - In a diesel engine the compression ratio is 13: 1 and fuel is cut off at 8% of the stroke. Find the air standard efficiency of the engine. Take γ for air = 1.4.

$$5 + 3 + 2 + 5$$

- 10. a) A gas occupies 0.024 m 3 at 700 kPa and 95°C. It is expanded in the non-flow process according to the law $pv^{-1.2}$ = constant to a pressure of 70 kPa after which it is heated at a constant pressure back to its original temperature. Sketch the process on the p-V and T-s diagrams and calculate for the whole process the work done and the heat transferred. Take $C_p = 1.047$ and $C_n = 0.775$ kJ/kg K for the gas.
 - b) A rigid closed tank of volume 3 m ³ contains 5 kg of wet steam at a pressure of 200 kPa. The tank is heated until the steam becomes dry saturated. Determine the pressure and the heat transfer to the tank.

II-222833 (3)

- 11. a) Write the steady flow energy equation for a single steam entering and single steam leaving a control volume and explain the various terms.
 - At the inlet to a nozzle, the enthalpy of the fluid parsing is 3000 kd/kg and velocity is 60 m/s. At the exit, the enthalpy is 2762 kJ/kg. The nozzle is horizontal and there is negligible heat loss.
 - i) Find the velocity at the nozzle exit
 - ii) The inlet area is 0.1 m² and the specific volume at inle¹⁸ 187 m³/1g. Find the mass flow rate.
 - iii) If the specific volume at the nozzle exit is 0.498 m³/kg, find the exit area of the nozzle.
- 12. a) Derive Euler's equation of motion along a streamline.
 - b) A venturimeter has inlet and throat diameters of 300 mm and 150 mm. Verifiews through it at the rate of 0.065m³/s and the differential gauge is deflected by 1.2 m. The specific gravity of the manometric liquid is 1.6. Determine the coefficient of discharge of the venturimeter.
 - A jet of water from a 25 mm diameter nozzle is directed vertically upwords.

 Assuming that the jet remains circular and neglecting any loss of energy, which will be the diameter of the jet at a point 4.5 m above the nozzle, if the jet leave the nozzle with a velocity of 12 m/s?
- 13. a) A circular disk of diameter d is slowly rotated in a liquid of viscosity μ at a small distance h from a fixed surface. Derive an expression for the torque necessary to maintain an angular velocity ω.
 - b) Distinguish between the follow:
 - laminar and turbulent flow
 - ii) compressible and incompressible fluid
 - iii) static pressure and stagnation pressure
 - iv) viscous and inviscid fluid.

7 + 3

14. Write short notes on any three of the following:

X

- a) Pitot tube
- D Orifice meter
- Point function and path function
- a Streamline, streakline and pathline.

ENL

H-222333 (3)