Name : http://www.howtoexam.com	
Roll No.:	
Invigilator's Signature:	The second second
CS/B.Tech (IT, ECE, EEE, ICE	c)/SEM-3/M(CS)-312/2009-10
2009	9
NUMERICAL METHODS	AND PROGRAMMING
Time Allotted: 3 Hours	Full Marks: 70
The figures in the margin Candidates are required to give the as far as p	
GROUP (Multiple Choice T	
1. Choose the correct alterna	atives for any ten of the
following:	$10 \times 1 = 10$
i) If the interval of difference	ing is unity and $f(x) = ax^2 (a')$

i) If the interval of differencing is unity and $f(x)=ax^2$ ('a' is a constant) which of the following choices is wrong?

a)
$$\Delta f(x) = a(2x+1)$$

b)
$$\Delta^2 f(x) = 2a$$

c)
$$\Delta^3 f(x) = 2$$

d)
$$\Delta^4 f(x) = 0$$
.

ii) The number of significant figures in 6,00,000 is

iii) Which of the following is true?

a)
$$\Delta^n x^n = (n+1)!$$

b)
$$\Delta^n x^n = n$$

c)
$$\Delta^n x^n = 0$$

d)
$$\Delta^n x^n = n$$

33502

[Turn over

- iv) When Gauss elimination method is used to solve AX = B, A is transformed to a
 - a) unit matrix
 - b) lower triangular matrix
 - c) diagonally dominant matrix
 - d) upper triangular matrix.
- v) The method of iteration formula ϕ (x) must satisfy
 - a) $\left|\phi'(x)\right| < 1$
- b) $\left|\phi'(x)\right| > 1$
- c) $\left|\phi'(x)\right|=1$
- $d) \quad \left| \phi'(x) \right| = 2$
- vi) Regula-Falsi method is
 - a) conditionally convergent
 - b) linearly convergent
 - c) divergent
 - d) none of these.
- vii) Which of the following is true?
 - a) $E = 1 \Delta$
- b) $E = 1 + \Delta$
- c) $\Delta = 1 + \acute{E}$
- d) $E = 1/\Delta$.
- viii) The order of h in the error expression of Trapezoidal rule is
 - a) 6

b) 3

c) 5

- d) 2.
- ix) The degree of precision of Simpson's one third rule is
 - a) 1

b) 2

c) 3

d) 5.

```
Which of the following methods is an iterative method?
      x)
            a)
                 Gauss Elimination method
            b)
                 Gauss-Jordan method
            c)
                 Gauss-Seidel method
           d) Crout's method.
          main ( )
      xi)
           {
              print("%x",-1<<4);
           }
           a)
                                           b)
                                                F0
           c)
                 FFFF
                                           d)
                                                FFFO.
     xii) main ()
              char s[] = \{ a', b', c', \n', c', \n'', c', \n'', c', \n'', \n'', \n'', \n''' \};
              char *p, *str, *strl;
              p=&s[3];
             str=p;
              strl=s;
             printf("%d",++*p+++*str1-32);
           }
           a)
                177
                                          b)
                                                122
                 77
           c)
                                          d)
                                                277.
33502
                                    3
                                                              [ Turn over
```

```
CS/B.Tech (IT, ECE, EEE, ICE)/SEM-3/M(CS)-312/2009-10
```

```
xiii) main ()
     {
       int a=2, *f1. *f2;
       f1=f2=&a:
        f2+=f2+=a+=2.5:
       printf("\n%d %d %d", a, *f1, *f2);
     }
                                       16 16 16
     a)
          16 15 14
                                  b)
          16 15 16
                                  d)
                                       24 24 24.
     c)
xiv) main()
     {
       printf("\nab");
       printf("\bsi");
       printf("\rha");
     }
     What will be the output for the above code?
                                  b)
                                       ha
          hai
     a)
                                  d)
                                       ab
     c)
          h
```

GROUP - B (Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- a) What is the difference between interpolation and extrapolation? Give suitable examples.
 - b) If y (10) = 35·3, y (15) = 32·4, y (20) = 29·2, y (25) = 26·1, y (30) = 23·2 and y (35) = 20·5, find y (12) using Newton's forward interpolation formula. 3

3. a) Use Newton's divided difference formula to find f (5) from the following data:

X	0	2	3	4	7	8
f(x)	4	26	58	112	466	668

- b) What do you mean by geometrical interpretation of Simpson's $\frac{1}{3}$ rd rule?
- 4. a) Find the values of y'(x) and y''(x) at x = 1.1 from the following data, using Newton's forward interpolation formula:

X	1.0	1.2	1.4	1.6	1.8	2.0
Y	0	0.128	0.544	1.296	2.432	4

- b) What is ternary operator? Give examples.
- 5. a) Find the approximate value of $I = \int dx/(1+x)$ when the interval is (0, 1) and $h = \frac{1}{2}$. Use trapezoidal rule.
 - b) Show that $\Delta \log f(x) = \log [1 + \Delta f(x)/f(x)]$, where Δ is the forward difference operator.
- 6. Solve by using Euler's method the following differential equation for x = 1 by taking h = 0.2:

$$dy/dx = xy, y = 1 \text{ when } x = 0.$$

7. Find the smallest positive root of the equation $3x^3 - 9x^2 + 8 = 0$ correct to 4 places of decimals, using Newton-Raphson method.

33502 5 [Turn over

GROUP - C

(Long Answer Type Questions) Answer any three of the following.

 $3 \times 15 = 45$

Solve the system of linear equations Elimination method:

$$5x_1 - x_2 = 9$$

$$-x_1 + 5x_2 - x_3 = 4$$

$$-x_2 + 5x_3 = -6$$
.

b) Find the Newton-Raphson iterative formula to find the pth root of positive number N and hence find the cube-5 root of 17.

Evaluate the following: c) $\Delta^2 \left\{ (5x+12)/(x^2+5x+6) \right\}$, taking h=1 3

Write a C program to interpolate a given function as 9. a) specified argument by divided difference formula.

- Compute $I = \int x/\sin x \, dx$, where the interval is (0, 1/2)b) 5 using Simpson's rule with h = 1/4.
- Deduce trapezoidal rule for Newton-Cote's quadrature c) formula. 3

33502

10. a) Find the inverse of the following matrix.

5

$$\begin{pmatrix}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{pmatrix}$$

b) Solve the following system of equations by

LU factorization method:

:

$$2x - 6y + 8z = 24$$

$$5x + 4y - 3z = 2$$

$$3x + y + 2z = 16$$

- c) Evaluate $\int x e^x dx$ where the interval is (0, -1) by using Trapezoidal rule taking n = 6.
- 11. a) Write a C program to solve the equation $x^3-3x-5=0$ within (1, 2) by Bisection method correct upto 3 places of decimal.
 - b) Write a program in C using recursive function to calculate the GCD of any two given numbers.

33502

7

[Turn over

- 12. a) Find the root of the equation $3x \cos x 1 = 0$ that lies between 0 and 1, correct to four places of decimal, using bisection method.
 - b) Find the root of the equation $x^3-5x-7=0$, that lies between 2 and 3, correct to 4 places of decimals, using the method of false position.
 - c) State the condition of convergence of Newton-Raphson method.
- 13. a) Solve the following system of equations, correct to four places of decimals, by Gauss-Seidel iteration method: 8

$$x + y + 54z = 110$$

$$27x + 6y - z = 85$$

$$6x + 15y + 2z = 72$$

b) Find the values of y (0.1), y (0.2) and y (0.3) using Runge-Kutta method of the fourth order, given that

$$dy/dx = xy + y^2, y(0) = 1.$$