		•				
Roll No). :					
Invigila	utor's S	ignature :				
			ECE)/SEM-5/EC-502/2009-10 2009			
		DIGITAL CO	MMUNICATION			
Time A	llotted	: 3 Hours	Full Marks : 70			
	Th	e figures in the mo	urgin indicate full marks.			
Cand	idates (=-	e their answers in their own words as practicable.			
		GRO	DUP – A			
		(Multiple Choic	ee Type Questions)			
1. C	hoose t	he correct alterna	tives for any ten of the following:			
			$10\times1=10$			
i)	The	spectral density	of white noise is			
	a)	Exponential	b) Uniform			
	c)	Poisson	d) Gaussian.			
ii) Sampling theorem finds application in						
	a)	Amplitude modul	lation			
	b)	Frequency modu	lation			
	c)	PCM				
	d)	none of these.				

[Turn over

- iii) Measure of information $I(m_k)$ of a message m_k with probability p_k is given by
 - a) $\log_b(1/p_k)$
- b) $\log_b(p_k)$
- c) $\log_b \left(1 p_k\right)$
- d) $\log_b [1/(1-p_k)].$
- iv) What is effective to reduce cumulative error?
 - a) PCM
 - b) DPCM
 - c) Delta sigma modulation
 - d) ADM.
- v) To avoid aliasing, what is the Nyquist rate of the signal $x(t) = 8 \cos 200 \pi t$?
 - a) 50 Hz

b) 100 Hz

c) 200 Hz

- d) 400 Hz.
- vi) AMI is another name of which process?
 - a) Polar

b) Bipolar

c) On-off

d) None of these.

55404

	vii)	If no. of quatization levels is 256, then no. of bits for							
		per sample required is							
		a)	8	b)	10				
		c)	5	d)	none of these.				
	?								
		a)	AM	b)	FM				
		c)	Both (a) & (b)	d)	none of these.				
	emory source channels								
have probabilities 0.8 and 0.2. Then its entropy is									
		a)	0.85	b)	0.75				
•		c)	0.72	d)	none of these.				
	x)	In	n above question the efficiency for second arder						
		Huf	fman coding is						
		a)	0.923	b)	0.989				
		c)	0.72	d)	none of these.				
	xi)	For a given E_b / N_0 which digital modulation scheme							
	•	has smaller error probability?							
		a)	Coherent QPSK	b)	Coherent FSK				
	,	c)	Coherent PSK	d)	DPSK.				
554	04			3	[Turn over				

xii)	PN	sequence	is	used	to	generate

a) DSSS

b) GMSK

c) DPSK

d) none of these.

xiii) Equalizer is used to

- a) increase the signal to noise ratio at the receiver
- b) equalize the distortion introduced by channel
- c) decrease the error probability of signal detection
- d) none of these.
- xiv) For a voice grade signal, the signal to noise ratio of DPCM is
 - a) worse than standard PCM
 - b) better than standard PCM
 - c) same as standard PCM
 - d) none of these.
- xv) The bit rate of a digital communication system is 34 Mbps. The modulation scheme is QPSK. The band rate of the system is
 - a) 68 Mbps
- b) 34 Mbps
- c) 17 Mbps
- d) 85 Mbps.

55404

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- Explain with a suitable block diagram how an analog signal is converted into a digital signal using PCM.
- 3. Explain the principle of operation of QPSK modulator with suitable block diagram.
- 4. What are the desirable properties of line codes?
- 5. What is a PN sequence? What are the properties of a PN sequence?
 2 + 3
- 6. Explain the operation of early-late gate bit synchronizer.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) Deduce the transfer function of a matched filter. 5
 - b) Show that the SNR at the output of an optimum filter optimized for error performance is $8E_s/\eta$ where E_s = signal energy & $\eta/2 = G_n(f)$ is the PSD of AWGN.

55404

5

[Turn over

c) Consider a rectangular pulse s (t) of amplitude A & duration T sec, given by

$$s(t) = A, 0 < t < T$$

= 0, otherwise

and given that AT = 1

- i) Find the spectrum of the output signal of the matched filter.
- ii) Determine the output SNR of the matched filtre. 5
- a) Draw & explain the working of QPSK modulator and demodulator.
 - b) What are the advantages and disadvantages of DPSK modulation?
 - c) Compare the performance of QPSK and DPSK modulation schemes.
- 9. a) What is intersymbol interference (ISI)?
 - b) What is Nyquist criterion for zero ISI?
 - c) What are the limitations of Nyquist pulse? How is it solved using Raised Cosine Pulse.
 - d) A communication channel of bandwidth 75 kHz is required to transmit binary data at a rate of 0·1 Mbps using raised cosine pulses. Determine the roll-off factor.

55404

A

2

- 10. a) State and explain Shanon-Hartley channel capacity theorem. 5
 - b) What is meant by Shanon limit?
 - c) Eight message symbols

[X] = [x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8] have probabilities [P] = [1/4, 1/8, 1/16, 1/16, 1/16, $\frac{1}{4}$, 1/8, 1/16] respectively.

Apply Shanon-Fano coding procedure to find out efficiency of the coding scheme. Take M = 2.