

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 VLSI CIRCUITS & SYSTEMS

SEMESTER - 6

Time: 3 Hours]]			[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

l.,	Cho	ose th	ne correct alternatives for	r the following	; :	$10\times1=10$
	i)	Pse	udo NMOS logic provides	following advantages?		
		a)	Static power dissipation	on is less com	pared to CMOS logic	
		b)	It is much faster comp	pared to other	logics	
		c)	It requires less no. of	transistors co	mpared to CMOS logic	
		d)	It is more noise immu	ne.		
	ii)	Free	quency Compensation fo	r an OP-AMP	can be achieved by	
		а)	increasing gain	b)	minimizing overall pha	se shift
		c)	adding a zero	d)	none of these.	
	iii)	Amo	ong the given OP-AMP to	pologies which	h one has the highest ou	tput swing?
		a) ်	Telescopic	b)	Folded Cascaded	
		c)	Two Stage	d)	Gain Boosted.	
-	iv)	Тур	ical value of subthreshol	d slope is		
		a)	80 mV/decade	b)	60 mV/decade	•
		c)	40 mV/decade	d)	90 mV/decade.	

VI-269722 (5-A

Slan	it in $(I_D - V_{ds})$ occurs due to			
a)	body effect	b)	velocity saturation	
c)	channel length modulation	d)	mobility degradation.	
The	unit for $(\mu_n C_{ox})$ is			
a)	A/V ²	b)	V - 1	· •
c)	ohm	d)	(ohm) ^{- 1}	
e)	No unit.			
		n F = /	A(B+CD) using static CMOS	S design
a)	4	b)	8	
c)	6	d)	12.	
A lo	gic gate has V _{OH} = 5V, V _{OL} =	0·2V,	$V_{IH} = 2.5V$ and $V_{IL} = 0.8$ V. 7	he noise
mar	gins are			
a)	0.6 V and 2.5 V	b)	2.3 V and 4.2 V	
c)	1.7 V and 2.3 V	d)	1.7 V and 4.8 V.	
DRA	M is widely used because	XC		
a)	refreshing operation is not no	eeded		·
b)	of low cost and high density			
c)	of low power consumption	J*		
d)	of high speed.			
The	model parameter LAMDA (λ) i	n a M(OS structure stands for	
a)	Flicker noise coeffficient			.
b)	Transit time			
c)	Channel length modulation			
· ,	Cuminer teribar moderation	•		
	a) c) The a) c) To i num a) c) A lo mar a) c) DRA b) c) d) The a)	a) body effect c) channel length modulation The unit for $(\mu_n C_{ox})$ is a) A/V^2 c) ohm e) No unit. To implement the Boolean function number of transistors required is a) 4 c) 6 A logic gate has $V_{OH} = 5V$, $V_{OL} = 0$ margins are a) 0.6 V and 2.5 V c) 1.7 V and 2.3 V DRAM is widely used because a) refreshing operation is not not b) of low cost and high density c) of low power consumption d) of high speed. The model parameter LAMDA (λ) is a) Flicker noise coeffficient b) Transit time	 a) body effect b) channel length modulation d) The unit for (μ_n C_{ox}) is a) A/V² b) ohm d) ohm e) No unit. To implement the Boolean function F = 1 number of transistors required is a) 4 b) c) 6 d) A logic gate has V_{OH} = 5V, V_{OL} = 0·2V, margins are a) 0·6 V and 2·5 V b) c) 1·7 V and 2·3 V d) DRAM is widely used because a) refreshing operation is not needed b) of low cost and high density c) of low power consumption d) of high speed. The model parameter LAMDA (λ) in a MO a) Flicker noise coeffficient b) Transit time 	a) body effect b) velocity saturation c) channel length modulation d) mobility degradation. The unit for $(\mu_n C_{ox})$ is a) A/V^2 b) V^{-1} c) ohm d) $(ohm)^{-1}$ e) No unit. To implement the Boolean function $F = \overline{A(B + CD)}$ using static CMOS number of transistors required is a) 4 b) 8 c) 6 d) 12. A logic gate has $V_{OH} = 5V$, $V_{OL} = 0.2V$, $V_{IH} = 2.5V$ and $V_{IL} = 0.8 V$. The margins are a) $0.6 V$ and $2.5 V$ b) $2.3 V$ and $4.2 V$ c) $1.7 V$ and $2.3 V$ d) $1.7 V$ and $4.8 V$. DRAM is widely used because a) refreshing operation is not needed b) of low cost and high density c) of low power consumption d) of high speed. The model parameter LAMDA (λ) in a MOS structure stands for a) Flicker noise coeffficient b) Transit time

Lifeth

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Design the following circuits using Transmission Gates:

 $2 \times 2\frac{1}{2}$

- a) D Flip-flop
- b) 2 input XOR Gate.
- 3. Explain how a combination of swithches and capacitors can be used to emulate a resistor.
- 4. Design a current sink of 30 μ A assuming the mirror transistor current is 10 μ A. Given $V_{DD} = -V_{SS} = 2.5 \text{ V}$, $V_{GS} = 1.2 \text{ V}$ and W/L ratio for the mirror transistor as 15/5.
- 5. Explain why NOR Gates are preferred for NMOS circuits while NAND Gates are preferred for static CMOS circuits.
 - Describe the following pheomena in MOS structure:

 $2 \times 2\frac{1}{2}$

a) Velocity saturation

6.

b) Channel length modulation.

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. a) Describe in detail Lamda-based design rule for layout design.
 - b) What is stick diagram? Mention its use.
 - c) What do you mean by active layer and poly layer in CMOS process?
 - d) Write down the difference between twin-tub process and p-well process.

6 + 3 + 3 + 3

- 8. a) Draw the circuit diagram of dual slope A/D converter and explain its operation.
 - b) What is a phase locked loop? Mention two uses of phase locked loop.
 - c) Realize an active LPF of cut-off frequency 10 kHz and gain 10.

6 + 5 + 4

VI-269722 (5-A)

- 9. a) Draw the layout of a CMOS inverter (not to scale). Explain your drawing conventions.
 - b) Design a static CMOS circuit to implement the Boolean function $F = \overline{D} \cdot \overline{E} \cdot \overline{A} + \overline{B} \cdot \overline{C}$.
 - c) Draw the circuit of a CMOS full adder circuit and explain its operation. 5 + 5 + 5
- 10. a) Explain with a circuit diagram, operation of a differential amplifier.
 - b) What is CMRR? Determine CMRR of the following circuit.

6+(3+6)

- 11. a) Why is reference voltage required in IC? What are the criteria for a good reference voltage source in VLSI circuit?
 - b) Explain the operation of a band gap voltage reference source in a VLSI circuit.
 - c) Explain briefly difficult stages of an operational amplifier with the help of a block diagram. (2+2)+7+4

END

VI-269722 (5-A)