

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 VLSI CIRCUITS & SYSTEMS SEMESTER - 6

Time: 3 Hours]				[Full Marks: 70
•				[I will marks . / O

GROUP - A

			anoc	- 41	
			(Multiple Choice	Type (Questions)
1.	Cho	ose th	e correct alternatives for any te	en of th	e following: $10 \times 1 = 10$
	i)	Wha	at is another name of D. Gzaski	chart 1	?
		a)	Y Chart	b)	Smith Chart
•		c)	Z Chart	d)	Log Chart.
	ii)	Cha	nnel-less Gate array is a sub-ty	pe of	
		a)	FPGA	b)	PLD
		c)	ASIC	d)	None of these.
	iii)	Mini	mum number of transistors rec	quired (to implement $F = ABC + DE + F$ is
		a)	5	b)	6
		· c)	7	d)	none of these.
	iv)	The	output of physical design is		
		a)	Circuit diagram	b)	Mask
		c)	Lay-out	d)	RTL.

6844 (15/06)

v)	DRA	AM is widely used because				
	a)	refreshing operation is not needed				
	b)	of low cost and high density				
	c)	of low power consumption				
	d)	of high speed.				
vi)	Dat	a refresh operation is needed in				
	a)	DRAM b) Flash				
	c)	SRAM d) FRAM.				
vii)	For	a symmetrical CMOS inverter the relation between aspect ratio of NMOS and				
	PMO	OS is				
	a)	(W/L) p = (W/L) n b) $(W/L) p = 2.5 (W/L) n$				
	c)	(W/L) n = 2.5 (W/L) p d) $(W/L) n = 5 (W/L) p$.				
viii)	Fred	quency compensation of Op-Amp using MOS technology is done by				
	a)	decreasing the number of stages				
	b)	minimizing the number of poles in single path				
	c)	achieving low voltage gain				
	d)	all of these.				
ix)	A B.	JP is considered as Open Switch (or OFF) when				
	a) .	both junctions are forward blased				
•	b)	EBJ is forward and CBJ is reverse				
	(c)	both junctions are reverse biased				
	d)	EBJ is reverse and CBJ is forward.				

6844 (15/06)

CS/B.Tech (ECE)/SEM-6/EC-604/09

2000
ltech
S GARGAIN
*
1

X)	піе	rarchical decomposition of a r	arge sys	tem in vital design is can	ieu
	a)	modularity	b)	regularity	•
	c)	locality	d)	none of these.	
xi)	Whi	ich of the following is not a pa	urt of FPC	GA?	
	a)	CLB	b)	I/O Block	
	c)	Vertical routing channel	d)	FSM.	
xii)	The	quantisation noise of a DAC	having N	number of bits is	
	a)	directly proportional to 2^{N}		1	
	b)	directly proportional to 2 N	1		
•	c)	inversely proportional to 2 N	1		
	d)	inversely proportional to 2	N – 1 .		
	.*	GRO	UP – B		
		(Short Answer		uestions)	
		Answer any thr	ee of the	following.	$3 \times 5 = 15$
Wha	it is l	MOSFET scaling? What is the	he need	of scaling? Compare va	arious types of
scali	ing.				1 + 2 + 2
Expl	lain ti	he following phenomenon in a	n MOS s	tructure :	3 + 2
a)	Cha	annel length modulation			
b)	Pin	ch-off.			
a)	Wh	at do you mean by VHDL? W	hy is it r	equired in VLSI circuit s	mulation?
					1 + 1
b)	Der	ive saturation current in an n	-MOS tr	ansistor.	3
44 (1	5/06	D			

68

2.

3.

- 5. a) What is current mirror?
 - With circuit diagram explain the operation of an MOS current mirror. b) 1 + 4
- Draw the layout and schematic diagram of a 2-input static CMOS NOR Gate and 6. identify the corresponding components in the two drawings. 1 + 1 + 3

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

What is Y cycle in VLSI? Explain VLSI design cycle in detail.

2 + 6

- What do you mean by standard cell design? How does it differ from gate arrray b) design? 2 + 3
- c) What is top-down and bottom-up design in VLSI?

2

8. a) Design a static CMOS circuit to implement the Boolean function:

$$F = AB + AB^{\dagger}C + A^{\dagger}C^{\dagger}.$$

7

b) Draw the CMOS half adder circuit and explain its operation.

5

Explain why NMOS is preferred for pull-down network and PMOS is preferred c) for pull-up network.

3

aì Design the following circuit using PAL, PLA and ROM:

$$Y1 = AB + A^{T}C + ABC^{T}$$
, $Y2 = AB^{T}C$, $Y3 = BC + ABC^{T}$

6

b) Design a master-slave D flip-flop. Describe its operation.

3

Describe the read and write operation of a six transistor SRAM cell. **c**)

6

6844 (15/06)

END

6844 (15/06)