

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 FORMAL LANGUAGE AND AUTOMATA THEORY SEMESTER - 4

· · · · · · · · · · · · · · · · · · ·		-		
Time: 3 Hours]	The state of the s			[Full Marks : 70
	the state of the s		and the second s	

GROUP - A

		(Multiple Choice Type Questions)
Cho	ose th	the correct alternatives for the following: 10×1
1)	Whi	ch of the following regular expressions over { 0, 1 } denotes the set of
	stri	ngs not containing 100 as a sub-string?
	a)	O*(1*O)* b) O*1010*
•	c)	0*1*01* d) 0*(10+1)*.
ii)	DFA	has
	a)	single final state
	b)	more than one initial states
	c)	unique path (for a set of inputs) to the final state
	d)	all of these.
iii)	Whi	ch of the following is regular?
	a)	Strings of 0's whose length is a perfect square
	b)	Strings of all palindromes made up of 0's & 1's
	c)	Strings of 0's, whose length is a prime number
	d)	Strings of odd number of zeroes.
iv)	The	logic of pumping lemma is a good example of
•	a)	the pigeon-hole principle b) the divide & conquer technique
	c)	recursion d) iteration.

Vj	ine	class of context free language	is not c	losed under	
	a)	concatenation	b)	union	
	c)	intersection	d)	repeated concatenation.	
vi)	The	grammar $G = (\{S\}, \{0,1\}, P,S)$	where P	={S→0S1, S→0S, S→S1, S→0} is	а
•	a)	recursively enumerable lang	uage		
•	b)	regular language			
	c)	context sensitive language			
. N	d)	context free language.			
vii)	If S i	s the number of states in NDF	A then	equivalent DFA can have maxim	ım of
	a)	S states	b)	S-1 state	
	c)	2 ⁸ states	d)	$2^8 - 1$ states.	
viii)		uages, then	ted by a	NPDA and L2 is the set of conte	ext free
	a)	L1=L2	b)/	L1CL2	
		L2Cl1	d)	None of these.	· · · · · · · · · · · · · · · · · · ·
ix)		t is the highest type numl uction rules	ber to	the grammar given by the fo	llowing
		Aa, A → c Ba, B→abc			•
	a)	zero	b)	one	
	c)	two	d)	three.	
x)	Give	n an arbitrary NDFA with n	states,	the maximum number of states	in an
	equiv	valent minimized DFA is at lea	st		
	a)	n ⁰	b)	2 ⁿ	
	c)	n!	d)	None of these.	
481	l (1A)	ח			

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = .15$

- 2. a) What do you mean by a sub-tree of a derivation tree?
 - b) Consider G whose productions are S → aAS/a, A → SbA/SS/ba. Show that S → aabbaa by constructing a derivation tree, by right most derivation, whose yield is aabbaa.
- 3. Convert the Mealy Machine (given below) to a Moore Machine.

5

	Next State	i/p=0	Next state	i/p=1
Present State	State	Output	State	Output
Q ₁	Q ₂	1	Q ₁	0
Q ₂	Q ₃	Ö	Q ₄	1
Q_3	Q ₁	100	Q ₄	0
Q ₄	Q ₃	that said to be of	Q_2	1

4. Reduce the following grammars to GNF:

$$S \rightarrow AO, A \rightarrow OB, B \rightarrow OA, B \rightarrow 1$$

5

5. The set $L = \{a^i b^j c^k / \text{where } i, j, k \text{ are integer and } i, j, k \ge 1\}$. Is L regular? Justify your 1 + 4 answer.

6. Minimize the following machine by determining the set of equivalent states.

Present State	Next State	i/p=0	Next state	i/p=1
resent State	State	Output	State	Output
A NEW AD	E PAR	& sa Looton	der G D von mit	0
B	C C	0	A	0
С	B nation Memoria	O soft water asset	G ameliant risaM	0
D	G	0	A	0
E	F	1	В	0
F	nam e	uqtuO-1 2°	D	0
G	D	0	G	0
. H	F	1	В	.0

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

a) State & discuss Myhill-Nerode theorem.

5

b) Write the CFG for the language

$$L = \{0^i \ 1^j \ 2^k | i=j \text{ or } j=k\}.$$

5

c) Prove that CFLs are not closed under intersection and complement operation. 5

CS/B.TECH (CSE)/SEM-4/CS-401/08

- a) E → E+E|E*E|a. Prove that the CFG with this production rule is ambiguous.
 Remove the ambiguity from this grammar.
 - b) $S \rightarrow AB$; $A \rightarrow a$, $B \rightarrow C/b$, $C \rightarrow D$; $D \rightarrow E$, $E \rightarrow a$.

remove the unit production.

$$L = \{a^n | b^n | n \ge 0\}$$
. Find a CFG to generate L^2 .

3 + 2

c) Design a PDA which accepts the language.

L = {
$$W \varepsilon (a,b)^* | W$$
 has equal no. of a & b}.

5

- 9. a) A long sequence of input pulses enters a two-input, two-output synchronous sequential circuit, which is required to produce an output pulse Z=1, whenever a sequence 010101 occurs. Overlapping sequences are accepted. Draw the state transition diagram.
 - b) Find minimum state reduced machine containing the following incompletely specified machine.

to division	GET TO A	NZ, Z	cyala id
PS PS	I ₁	I ₂	I ₃
A	C, 0	E, 1	ale V
В	C, 0	E, -	
С	B, -	C, 0	A, -
D	В, 0	C, -	E,-
E	de l'age	E, 0	A, -

IV-244811 (1A)

I in Indicaya on SI

10. a) Show that the following FSM is information lossless of finite order:

PS	NZ	Z, Z
10	x=0	x=1
A	C, 0	D, 1
В	D, 0	C, 1
c	A, 0	В, 0
D	C, 1	D, 1

Also find its order of information losslessness.

7

b) Find the minimal inverse machine of the FSM in problem (a).

- 8
- 11. a) What do you mean by Inverse machine? Write the definition of a lossless machine. What do you mean by Halting problem of a Turing machine? Why a Turing machine is called linear bounded Automata? 2+2+2+2

b) Consider the Turing machine's description is given in table below. Draw the computation sequence of the input string 00.

Present state	Tape symbol :: b	Tape symbol :: 0	Tape symbol :: 1
Q ₁	1L q ₂	ORq ₁	-
Q_2	bRq ₃	OL q ₂	1LQq ₂
Q ₃	0/2	bRq ₄	bRq ₅
Q ₄	ORq ₅	ORq4	1Rq ₄
Q_5	OL q ₂		_

END