ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 FORMAL LANGUAGE AND AUTOMATA THEORY SEMESTER - 4 | · · · · · · · · · · · · · · · · · · · | | - | | | |---------------------------------------|--|---|--|-------------------| | Time: 3 Hours] | The state of s | | | [Full Marks : 70 | | | the state of s | | and the second s | | ### GROUP - A | | | (Multiple Choice Type Questions) | |------|------------|--| | | | | | Cho | ose th | the correct alternatives for the following: 10×1 | | 1) | Whi | ch of the following regular expressions over { 0, 1 } denotes the set of | | | stri | ngs not containing 100 as a sub-string? | | | a) | O*(1*O)* b) O*1010* | | • | c) | 0*1*01* d) 0*(10+1)*. | | ii) | DFA | has | | | a) | single final state | | | b) | more than one initial states | | | c) | unique path (for a set of inputs) to the final state | | | d) | all of these. | | iii) | Whi | ch of the following is regular? | | | a) | Strings of 0's whose length is a perfect square | | | b) | Strings of all palindromes made up of 0's & 1's | | | c) | Strings of 0's, whose length is a prime number | | | d) | Strings of odd number of zeroes. | | iv) | The | logic of pumping lemma is a good example of | | • | a) | the pigeon-hole principle b) the divide & conquer technique | | | c) | recursion d) iteration. | | Vj | ine | class of context free language | is not c | losed under | | |-------|------------|--|------------|---------------------------------|---------------------------------------| | | a) | concatenation | b) | union | | | | c) | intersection | d) | repeated concatenation. | | | vi) | The | grammar $G = (\{S\}, \{0,1\}, P,S)$ | where P | ={S→0S1, S→0S, S→S1, S→0} is | а | | • | a) | recursively enumerable lang | uage | | | | • | b) | regular language | | | | | | c) | context sensitive language | | | | | . N | d) | context free language. | | | | | vii) | If S i | s the number of states in NDF | A then | equivalent DFA can have maxim | ım of | | | a) | S states | b) | S-1 state | | | | c) | 2 ⁸ states | d) | $2^8 - 1$ states. | | | | | | | | | | viii) | | uages, then | ted by a | NPDA and L2 is the set of conte | ext free | | | a) | L1=L2 | b)/ | L1CL2 | | | | | L2Cl1 | d) | None of these. | · · · · · · · · · · · · · · · · · · · | | | | | | | | | ix) | | t is the highest type numl
uction rules | ber to | the grammar given by the fo | llowing | | | | Aa, A → c Ba, B→abc | | | • | | | | | | | | | | a) | zero | b) | one | | | | c) | two | d) | three. | | | x) | Give | n an arbitrary NDFA with n | states, | the maximum number of states | in an | | | equiv | valent minimized DFA is at lea | st | | | | | a) | n ⁰ | b) | 2 ⁿ | | | | c) | n! | d) | None of these. | | | 481 | l (1A) | ח | | | | ### GROUP - B # (Short Answer Type Questions) Answer any three of the following. $3 \times 5 = .15$ - 2. a) What do you mean by a sub-tree of a derivation tree? - b) Consider G whose productions are S → aAS/a, A → SbA/SS/ba. Show that S → aabbaa by constructing a derivation tree, by right most derivation, whose yield is aabbaa. - 3. Convert the Mealy Machine (given below) to a Moore Machine. 5 | | Next State | i/p=0 | Next state | i/p=1 | |----------------|----------------|--------------------|----------------|--------| | Present State | State | Output | State | Output | | Q ₁ | Q ₂ | 1 | Q ₁ | 0 | | Q ₂ | Q ₃ | Ö | Q ₄ | 1 | | Q_3 | Q ₁ | 100 | Q ₄ | 0 | | Q ₄ | Q ₃ | that said to be of | Q_2 | 1 | 4. Reduce the following grammars to GNF: $$S \rightarrow AO, A \rightarrow OB, B \rightarrow OA, B \rightarrow 1$$ 5 5. The set $L = \{a^i b^j c^k / \text{where } i, j, k \text{ are integer and } i, j, k \ge 1\}$. Is L regular? Justify your 1 + 4 answer. 6. Minimize the following machine by determining the set of equivalent states. | Present State | Next State | i/p=0 | Next state | i/p=1 | |---------------|---------------------|--------------------|---------------------|--------| | resent State | State | Output | State | Output | | A NEW AD | E PAR | & sa Looton | der G D von mit | 0 | | B | C C | 0 | A | 0 | | С | B
nation Memoria | O soft water asset | G
ameliant risaM | 0 | | D | G | 0 | A | 0 | | E | F | 1 | В | 0 | | F | nam e | uqtuO-1 2° | D | 0 | | G | D | 0 | G | 0 | | . H | F | 1 | В | .0 | ### GROUP - C ## (Long Answer Type Questions) Answer any three of the following questions. $3 \times 15 = 45$ a) State & discuss Myhill-Nerode theorem. 5 b) Write the CFG for the language $$L = \{0^i \ 1^j \ 2^k | i=j \text{ or } j=k\}.$$ 5 c) Prove that CFLs are not closed under intersection and complement operation. 5 ### CS/B.TECH (CSE)/SEM-4/CS-401/08 - a) E → E+E|E*E|a. Prove that the CFG with this production rule is ambiguous. Remove the ambiguity from this grammar. - b) $S \rightarrow AB$; $A \rightarrow a$, $B \rightarrow C/b$, $C \rightarrow D$; $D \rightarrow E$, $E \rightarrow a$. remove the unit production. $$L = \{a^n | b^n | n \ge 0\}$$. Find a CFG to generate L^2 . 3 + 2 c) Design a PDA which accepts the language. L = { $$W \varepsilon (a,b)^* | W$$ has equal no. of a & b}. 5 - 9. a) A long sequence of input pulses enters a two-input, two-output synchronous sequential circuit, which is required to produce an output pulse Z=1, whenever a sequence 010101 occurs. Overlapping sequences are accepted. Draw the state transition diagram. - b) Find minimum state reduced machine containing the following incompletely specified machine. | to division | GET TO A | NZ, Z | cyala id | |-------------|----------------|----------------|----------------| | PS
PS | I ₁ | I ₂ | I ₃ | | A | C, 0 | E, 1 | ale V | | В | C, 0 | E, - | | | С | B, - | C, 0 | A, - | | D | В, 0 | C, - | E,- | | E | de l'age | E, 0 | A, - | IV-244811 (1A) I in Indicaya on SI 10. a) Show that the following FSM is information lossless of finite order: | PS | NZ | Z, Z | |----|------|------------| | 10 | x=0 | x=1 | | A | C, 0 | D, 1 | | В | D, 0 | C, 1 | | c | A, 0 | В, 0 | | D | C, 1 | D, 1 | Also find its order of information losslessness. 7 b) Find the minimal inverse machine of the FSM in problem (a). - 8 - 11. a) What do you mean by Inverse machine? Write the definition of a lossless machine. What do you mean by Halting problem of a Turing machine? Why a Turing machine is called linear bounded Automata? 2+2+2+2 b) Consider the Turing machine's description is given in table below. Draw the computation sequence of the input string 00. | Present state | Tape symbol :: b | Tape symbol :: 0 | Tape symbol :: 1 | |----------------|-------------------|-------------------|-------------------| | Q ₁ | 1L q ₂ | ORq ₁ | - | | Q_2 | bRq ₃ | OL q ₂ | 1LQq ₂ | | Q ₃ | 0/2 | bRq ₄ | bRq ₅ | | Q ₄ | ORq ₅ | ORq4 | 1Rq ₄ | | Q_5 | OL q ₂ | | _ | END