1.

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 ADVANCED COMPUTER ARCHITECTURE SEMESTER - 4

	4			
There are a O Timesens 1	1	•		[Full Marks : 70
Time: 3 Hours	1			[Full Mains . / C

GROUP - A

Cho	ose th	ne correct alternatives	for the following	g:	$10\times1=10$
i)	The	seek time of a disk i	s 30 ms. It rota	ites at the rate of	of 30 rotations/second.
	The	capacity of each track	c is 300 words.	The access time	is approximately
	a)	62 ms	b)	60 ms	ρ
٠	c)	47 ms	d)	none of these.	
ii)	The	performance of a pip	elined processor	r suffers if.	
	a)	the pipeline stages l	nave different de	elays	
•	b)	consecutive instruct	tions are depend	lent on each othe	er
	c)	the pipeline stages	share hardware	resources	
	d)	all of these.	1 19		
iii)	Con	nsider the high speed	40 ns memory o	cache with a succ	cessful hit ratio of 80%.
iii)					cessful hit ratio of 80%. t is the effective access
iii)	The		an access time		
iii)	The	regular memory has	an access time		
iti)	The	e regular memory has e for CPU to access m	an access time emory?	of 100 ns. Wha	
iii)	The time a)	e regular memory has e for CPU to access m 52 ns 70 ns	an access time emory ? b) d)	of 100 ns. Wha 60 ns 80 ns.	
	The time a) c) Wha	e regular memory has e for CPU to access m 52 ns 70 ns	an access time emory ? b) d)	of 100 ns. Wha 60 ns 80 ns.	t is the effective access
	The time a) c) Wha	e regular memory has e for CPU to access m 52 ns 70 ns at is a main advantag	an access time emory ? b) d) e of classical ve	60 ns 80 ns.	t is the effective access S) compared with RISC
	The time a) c) What bas	e regular memory has e for CPU to access m 52 ns 70 ns at is a main advantag ted systems (RS) ?	an access time emory? b) d) e of classical very higher memor	60 ns 80 ns.	t is the effective access S) compared with RISC
	The time a) c) Whatbas a)	e regular memory has e for CPU to access m 52 ns 70 ns at is a main advantag ed systems (RS) ? VS have significantle	an access time emory? b) d) e of classical very higher memorals	60 ns 80 ns.	t is the effective access S) compared with RISC

IV-244855 (5-A)

t *	٠,
0	
	c

(V)	Ass	sociative memory is a	1.		•
	a)	pointer addressable memory			
	b)	very cheap memory			
	c)	content addressable memory			
•	d)	slow memory.			
vi)	The	e principle of locality justifies th	e use (o f	
	a)	Interrupts	b)	Polling	
	c)	DMA	d)	Cache memory.	
vii)	Ho	w many address bits are require	ed for a	a 512 × 4 memory ?	
	a)	512	b)	4	
	c)	9	d)	$A_0 - A_6$.	
viii)	A s	ingle bus structure is primarily	found	in	
	a)	Main frames	•		
•	b)	High performance machines			
	c)	Mini and Micro- computers	X		
	d)	Supercomputers.			
ix)	Wha	at will be the speed up for a fo	ur-sta	ge linear pipeline, when the nu	mber of
	inst	ruction $n = 64$?)		
	a)	4.5	b)	7.1	
	c) (6.5	d)	None of these.	
x)	Dyn	amic pipeline allows			
	a)	multiples function to evaluate			
	b)	only streamline connection	· · · · · · · · · · · · · · · · · · ·		
	c)	to perform fixed function			
	d)	none of these.			
AAQ			V., *		

.Tech(CSE)/SEM-4/CS-403/08

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. What are the different parameters used in measuring CPU performance? Briefly discuss each.
- 3. What do you mean by m-way memory interleaving? In the system with pipeline processing, is the memory interleaving useful? If yes, explain why. 2 + 3
- 4. Develop $3^2 \times 4^2$ delta network.

5

5. Compare superscalar, super-pipeline and VLIW techniques.

5

6. Discuss about strip mining and vector stride in vector processors.

3 + 2

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3\times15=45$

- 7. a) What is Multistage Switching Network?
 - b) Describe the distribution and shared memory model of SIMD architecture.
 - c) Draw the block diagram and explain the functionality of processing element.

2 + 8 + 5

- 8. a) What is meant by pipeline stall?
 - b) Draw the block diagram of C-access memory function. Why is it necessary and how does it improve the memory access time?
 - c) Implement the data routing logic of SIMD architecture to compute $s(k) = \sum_{i=0}^{k} Ai$ for k = 0, 1, 2...N-1.
 - d) A computer has cache access time of 100 nanosecs, a main memory access time of 1000 nanosecs and a hit ratio of 0.9.
 - i) Find the average access time of the memory system
 - ii) Suppose that in the computer, there is no cache memory, then find the average access time, when the main memory access time is 1000 nanosecs. Compare the two access times. 2 + 4 + 4 + 5

IV-244855 (5-A)

- 9. a) What is Memory Management Unit (MMU)?
 - b) What are the advantages of using cache memory organization? Define hit ratio. Compare and contrast associative mapping and direct mapping.
 - c) Draw a 16-input Omega network using 2 × 2 switches as building blocks:
 - Show the switching setting for routing a message from node 1011 to node 0101 and from node 0111 to node 1001 simultaneously. Does blocking exist in this case?
 - ii) Determine how many permutations can be implemented in one-pass through this Omega network. What is the percentage of one-pass permutations among all permutations?
 - What is the maximum number of passes needed to implement any permutation through the network? 2 + 7 + 6
- 10. a) What do you mean by "Data flow Computer"?
 - b) With simple diagram, explain Data flow architecture and compare it with control flow architecture.
 - c) Draw data flow graphs to represent the following computations:
 - i) X = A + B
 - ii) Y = X/B
 - iii) Z = A * X
 - iv) M = Z Y
 - $v) \qquad N = Z * X$
 - vi) P = M/N.
 - d) What is vector processor? Give the block diagram to indicate he architecture of a typical Vector Processor with multiple function pipes. 2 + 6 + 3 + 4
- 11. Write short notes on any three of the following:

 3×5

- a) Omega Network
- b) Cross bar Switches
- c) Reservation table
- d) Multiport Network
- e) CM-2 machine.

END

IV-244855 (5-A)