Roll No.		*******	······································			
Invigilat	or's Signature :	•••••				
	CS/B.Te	ch (CSE)	/SEM-4/CS-403/2010			
	2	010				
A	DVANCED COMPU	TER AF	RCHITECTURE			
Time All	otted: 3 Hours		Full Marks : 70			
	The figures in the ma	rgin indice	ite full marks.			
Candid	lates are required to give as far	their ans	and the state of t			
	GRO	UP – A				
	(Multiple Choic	e Type g	uestions)			
1. Ch	oose the correct alternat	ives for th	e following: $10 \times 1 = 10$			
i)	A computer with cacl	he access	time of 100 ns and hit			
	ratio of 0.9 produces a	ın average	access time of			
	a) 250 ns	b)	200 ns			
	c) 190 ns	d)	none of these.			
ii)	Which of the follows	ng is ex	ample of 2-dimensional			
	topologies in static ne	twork?				
	a) Mesh	b)	3C ³ / Network			
	c) Linear Array	d)	None of these.			
4201		•	[Turn over			

		vantage of MMX technology lies in
	a)	Multimedia application
	b)	VGA
	c)	CGA
	d)	none of these.
iv)	Arr	ay Processor is present in
	a)	SIMD MISD
	c)	MIMD d) none of these.
v)	Bas	sic difference between Vector and Array processors is
	a)	pipelining
	b)	interconnection network
	c)	register
	d)	none of these.
vi)	Stri	de in Vector processor is used to
	a)	differentiate different data types
	b)	registers
	c)	differentiate different data

(Ho	Which	one o	f the	following	has i	no r	ractical	usage	?
V ALJ	AATTECTT A	one e	n uic	TOROUGH IN	TTOO 1	HO P	n actical	usugo	٠

a) SISD

b) SIMD

c) MISD

d) MIMD.

viii) Difference between RISC and CISC is

- a) RISC is more complex
- b) CISC is more effective
- c) RISC is better optimizable
- d) none of these.
- ix) For 2 instructions I and J, WAR hazard occurs if
 - a) $R(I) \cap D(J) \neq \phi$
- b) $R(I) \cap R(J) \neq \phi$
- c) $D(I) \cap R(J) \neq \phi$
- d) none of these.
- x) The seek time of a disk is 50 ms. It rotates at the rate of 30 rotations/second. The capacity of each track is 300 words. The access time is approximately
 - a) 62 ns

b) 60 ns

c) 47 ns

d) none of these.

4201

.3

[Turn over

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Describe Flynn's classification of parallel computers.
- 3. Differentiate between C-access and S-access memory organizations.
- 4. What are the different factors that can affect the performance of a pipelined system? Differentiate between WAR and RAW hazards.
- 5. Assume that main memory size is of 32 kB \times 12. Cache memory size is of 512 \times 12 and block size is of 1 word. Describe the following:
 - a) Direct mapping technique
 - b) Associative mapping technique. $2\frac{1}{2} + 2\frac{1}{2}$
- 6. Compare between RISC and CISC.

4201

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. a) Consider the four stage pipelined processor specified by the following diagram:

This pipeline has a total evaluation time of six clock cycles. All successor stages must be used after each clock cycle.

- i) Specify the reservation table for above pipelined processor with six columns and four rows.
- ii) What are the forbidden latencies and the initial collision vector? Draw the state transition diagram.
- iii) Determine all simple cycles, greedy cycle and MAL.
- iv) Determine the throughput of this pipelined processor. Given clock period as 20 ns.
- b) What do you mean by pipelined chaining? Define the various types of vector instructions. (2+4+3+2)+4

4201

ţ

[Turn over

- 8. a) What is cache memory? Define global miss & local miss with a suitable example.
 - b) Describe different techniques to reduce Miss Penalty.
 - c) Describe different techniques to reduce Miss Rate.

(2+5)+4+4

- 9. a) What do you mean by multiprocessor system? What are the similarities and dissimilarities between the multiprocessor system and multiple computer system?
 - b) What are the different architectural models for multiprocessors? Explain each of them with example.
 - c) Distinguish between loosely coupled and tightly coupled multiprocessor architectures. Which architecture is better and why?

 5 + 5 + 5
- 10. a) Write a short note on vectorizing compliers.
 - b) What are strip mining and vector stride, in respect of vector processors?
 - c) Both vector processors and array processors are specialized to operate on vectors. What are the main differences between them?

 5 + 5 + 5

- 11. Write short notes on any three of the following: 3×5
 - a) Power PC
 - b) Memory to memory vector architecture
 - c) Array processor
 - d) Memory inclusion
 - e) Memory interleaving.