
2.

Signature of the Officer-in-Charge
Reg. No.

Roll No. of the Candidate

CS /BCA/SEM-2 /BM-201 / 08 ENGINEERING \& MANAGEMENT EXAMINATIONS, JUNE - 2008 MATHEMATICS (SEMESTER - 2)

Time : 3 Hours]

INSTRUCTIONS TO THE CANDIDATES :

1. This Booklet is a Question-cum-Answer Booklet. The Booklet consists of $\mathbf{3 2}$ pages. First page of the Booklet shows Instructions to the Candidates. The questions of this concerned subject commence from Page No. 3.
2. a) In Group - A, Questions are of Multiple Choice type. You have to write the correct choice in the box provided against each question.
b) For Groups - B \& C you have to answer the questions in the space provided marked 'Answer Sheet'. Questions of Group - B are Short answer type. Questions of Group - C are Long answer type. Write on both sides of the paper.
3. Fill in your Roll No. in the box provided as in your Admit Card before answering the questions.
4. Read the instructions given inside carefully before answering.
5. You should not forget to write the corresponding question numbers while answering.
6. Do not write your name or put any special mark in the booklet that may disclose your identity, which will render you liable to disqualification. Any candidate found copying will be subject to Disciplinary Action under the relevant rules.
7. Use of Mobile Phone, Calculator or Log table is totally prohibited in the examination hall.
8. You should return the booklet to the invigilator at the end of the examination and should not take any page of this booklet with you outside the examination hall, which will lead to disqualification.
9. Rough work, if necessary is to be done in this booklet only and cross it through.

No additional sheets are to be used and no loose paper will be provided
FOR OFFICE USE / EVALUATION ONLY Marks Obtained

$c \mid$	Group - A																	
Guestion Number																	Total Marks	Examiner's Signature
Marks Obtained																		

Head-Examiner/Co-Ordinator/Scrutineer

ENGINEERING \& MANAGEMENT EXAMINATIONS, JUNE - 2008 MATHEMATICS
 SEMESTER - 2

Time : 3 Hours]

[Full Marks : 70

GROUP - A
 (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :
$10 \times 1=10$
i) The order and degree of the differential equation

$$
\left(\frac{1+\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)^{3 / 2}=a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \quad \text { are }
$$

a) 2,1
b) 2,2
c) 2,3
d) none of these.

ii) The particular integral of $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=e^{2 x}$ is
a) $\frac{e^{2 x}}{9}$
b) $\quad \frac{e^{2 x}}{3}$
c) $\frac{e^{2 x}}{6}$
d) none of these.
\square
iii) Auxiliary equation of the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=\sin x$ is
a) $y=\cos 2 x+\sin 2 x$
b) $\quad y=\mathrm{c}_{1} \cos 2 x+\mathrm{c}_{2} \sin 2 x$
c) $y=\mathrm{c}_{1} \cos x+\sin 2 x$
d) none of these.

iv) Integrating factor of $x \mathrm{~d} y=y \mathrm{~d} x$ is
a) $\frac{1}{x^{2}}$
b) $\frac{1}{x}$
c) $\frac{y}{x}$
d) $\quad \frac{1}{y^{2}}$.
\square
v) A bounded sequence is
a) convergent
b) divergent
c) oscillatory
d) none of these.
\square
vi) A monotone increasing sequence is
a) bounded above
b) bounded below
c) convergent
d) divergent.

vii) If $\underset{n \rightarrow \infty}{\lim a_{n}}=0$, then the series $\sum(-1)^{n} a_{n}$ is
a) convergent
b) divergent
c) none of these.
viii) The infinite series $\frac{n}{(n+1)^{2}(n+2)}$ is
a) convergent
b) divergent
c) oscillatory
d) none of these.
\square
ix) The dimension of the subspace $\{(x, 0, y, 0) ; x, y$ are real $\}$ is
a) 1
b) 2
c) 3
d) 4 .
\square
x) If $\sum_{n}\left|\mathrm{a}_{n}\right|$ is convergent then $\sum_{n} \mathrm{a}_{n}$ is
a) convergent
b) divergent
c) oscillatory
d) none of these.
\square
xi) Sum (union) of two subspaces of a vector space is a
a) subspace of the vector space
b) not a subspace of the vector space
c) none of these.
xii) $\quad T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $T\left(x_{1}, x_{2}\right)=x_{1}, x_{2}$. Then kernel of T is
a) $\left\{\left(x_{1}-x_{1}\right): x_{1}\right.$ is real $\}$
b) $\quad\{(0,0),(1,-1)\}$
c) $\quad\{(0,0)\}$
d) $\quad\{(2,-2)\}$.
xiii) The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if
a) $\quad P \geq 1$
b) $\quad P>1$
c) $P<1$
d) $\quad P \leq 1$.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following. $3 \times 5=15$
2. Test the convergence of the series :
$x+\frac{2^{2} x^{2}}{2!}+\frac{3^{3} x^{3}}{3!}+\frac{4^{4} x^{4}}{4!}+\ldots \ldots \ldots \ldots \ldots, x>0$.
3. Examine conditional convergenee of the series.
$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \ldots \ldots \ldots \ldots$.
4. Show that the differential equation of all circles touching the x-axis at origin is $\left(x^{2}-y^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x y$.
5. Let $V=$ set of all second order sqaure matrix. $T: V \rightarrow V$ is defined by $T(X)=A X-X A$, where $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Find a basis of $\operatorname{Ker}(T)$ and hence nullity.
6. Define a monotonic sequence. When is a monotone sequence convergent ? Is the sequence $\left\{\frac{3 n+1}{n+2}\right\}_{n}$ convergent ?

6
 GROUP - C

(Long Answer Type Guestions)
Answer any three questions.
7. a) Examine if the set S is a subspace of R^{3} where,
$S=\left\{(x, y, z) \varepsilon R^{3}: x+2 y-z=0,2 x-y+z=0\right\}$. If S be a subspace determine its dimension.
b) If $\{\alpha, \beta, \gamma\}$ is a basis of a real vector space V, show that $\{\alpha+\beta, \beta+\gamma, \gamma+\alpha\}$ is also a basis of V.
c) Show that the vectors ($1,-2,3),(2,3,1)$ and $(-1,3,2)$ form a basis of R^{3}. Determine co-ordinates of ($1,0,0$) relative to this basis.

$$
5+5+5
$$

8. a) A linear mapping $T: R^{3} \rightarrow R^{2}$ is defined by
$T(3 x-2 y+z, x-3 y-2 z),(x, y, z) \varepsilon R^{3}$.

Find the matrix of T relative to the ordered bases ($0,1,0$), ($1,0,0),(0,0,1)$ of R^{3} and (0,1), (1, 0) of R^{2}.
b) Determine the linear mapping $T: R^{3} \rightarrow R^{3}$ that maps the basis vectors (1,0,0), ($0,1,0$), ($0,0,1$) to the vectors ($-1,2,1$), ($1,1,2$), ($2,1,1$) respectively. Find Ker T and verify that $\operatorname{dim} \operatorname{Ker} T+\operatorname{dim} \operatorname{Im} T=3$.
c) If $V(F)$ is the vecror spaces of all $2 \infty 2$ matrices then exibit a basis for $V(F)$ and also find the dimension.
9. Test the convergence of any three of the following series.
a) $1+\frac{2}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+$ \qquad
b) $\frac{1}{2}+\frac{1}{3}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+$ \qquad
c) $\quad \sum^{\infty} \frac{n!2^{n}}{n^{n}}$
$n=1$
d) $\frac{1}{1+a^{2}}-\frac{1}{2+a^{2}}+\frac{1}{3+a^{2}}$ \qquad
10. Solve any three of the following:
a) $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{x} \sin 2 y=x^{3} \cos ^{2} y$
b) $y=p \mathrm{x}+p^{n} ; p=\frac{\mathrm{d} y}{\mathrm{~d} x}$
c) Solve $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a^{2} y=\sec a x$
d) $\quad x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=\log x$.
11. a) What do you mean by convergence of a sequence ? Examine convergence of a sequence ${ }_{\{ } x_{n\}}$, where $x_{n}=1+\frac{1}{2}+\frac{1}{3}+$ \qquad $+\frac{1}{n}$.
b) If $x_{1}=\sqrt{2}, x_{n+1}=\sqrt{2 x n}$. Show that the sequence ${ }_{\{ } x_{n\}}$ is monotonically increasing and bounded. Hence show that $\lim _{n \rightarrow \infty} x_{n}=2$.
c) Prove that every convergent sequence is bounded. Is the converse true ? Justify your answer.
$5+5+5$

