11-Dec.-Exm.-Nk-08. 92

January - 2009. Maths -I

Con. 235-09.

TT-1020

(3 Hours)

[Total Marks: 100

- N.B.:(1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from question Nos. 2 to question No. 7.
 - (3) Figures to the right indicate full marks.
- 1. Solve:

20

(a)
$$\frac{dy}{dx} = \cos(x+y)$$

(b)
$$(x - 2e^y) dy + (y + x \sin x) dx = 0$$

(c)
$$x (1-x^2) \frac{dy}{dx} + (2x^2-1) y = x^3$$
.

- (d) $(x^2 + y^2) dx + 2xy \cdot dy = 0$.
- 2. (a) Find the eigen values and eigen vector for-

10

$$A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$

(b) Find the inverse of the matrix by applying elementary row transformations

10

$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$

3. (a) Find the nth derivative by method of fraction :

10

$$y = \frac{x}{(x-1)(x-2)(x-3)}$$

(b) Find nth derivative of

10

$$y = \frac{x}{x^2 + a^2} .$$

- (a) Find the curve in which length of the radius of curvature at any point is equal to two times the length of the normal at that point.
 - (b) Solve-

6

$$\frac{dy}{dx}$$
 - y tan x = y⁴ sec x.

(c) From the differential equation from $x = a \sin (wt + c)$ where a and c are arbitrary constants.

[TURN OVER

Con. 235-TT-1020-09.

2

5. (a) Discuss the consistency of-

10

$$3x + y + 2z = 3$$

$$2x - 3y - z = -3$$

x + 2y + z = 4(b) Find the inverse of the following matrix by finding its adjoint :

10

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

6. (a) Find the order and degree of the following:

6

(1)
$$y = x \frac{dy}{dx} + \frac{5}{\frac{dy}{dx}}$$

(2)
$$y = x \frac{dy}{dx} + 5 \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

(b) Reduce the matrix to Echelon and find its rank-

8

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$$

(c) Solve-

6

$$(x+y)\frac{dy}{dx}+y=0.$$

7. (a) Solve-

6

$$(y^4 + 2y) dx (xy^3 + 2y^4 - 4x) dy = 0.$$

. .

- (b) If the temperature of air is 30 °C and substance cools from 100°C to 70°C in 15 minutes. Find when the temperature will be 40°C.
 - 6

$$\frac{\partial^2 z}{\partial x \, \partial y} = \frac{\partial^2 z}{\partial y \, \partial x} \ .$$

(c) If $z = x^y + y^x$ then show that—