			376-07.	(OLD COURSE)	CD-8187	
o://www.h	nowtoexam.co	om		(3 Hours)	[Total Marks: 100	
	N.B.			remaining questions. sessary. Therefore in induction motors. in transformer.	MASTER Machine I	10
	2.	(a)	The power input to the R0 80 kW. The rotor emf is of (i) slip (ii) rotor speed (iii) resistance per phase if rot	OTOR of a 440 V 50 Hz, 6 pole, bserved to make 100 revolution mechanical power developed (iv) for current is 65 A. er stages in 3 phase induction m	3¢ induction motor is per minute. Calculate rotor cu loss (v) rotor	10
	3.	(a) (b)	Explain oscillating neutral Explain excitation phenom			10
	4.		3 zone operation. What is necessity of starter	eed characteristics of three phase in in three phase induction motor? E Derive their starting torques in te	xplain autotransformer	10
	circuit diagrams, phas (b) A 230 V, 50 Hz, 4 pole, s $r_1 = 2.3 \Omega$ $r_2 = 4.2 \Omega$ Core loss = 98 Watts Friction and windage I		circuit diagrams, phaser di A 230 V, 50 Hz, 4 pole, single $r_1=2.3~\Omega$ $r_2=4.2~\Omega$ χ Core loss = 98 Watts Friction and windage loss If the motor is running with a	fuction motor and capacitor start capacitor run motor. Draw 10 er diagrams and torque speed charactristics. Single phase induction motor has following constants and losses: 10 $x_1 = 3.2 \Omega$ $x_2 = 3.2 \Omega$ $x_m = 74 \Omega$ $\cos s = 30$ watts with a slip of 0.05 at rated voltage and frequency, then compute wer output, torque and efficiency with its auxiliary winding open.		
			$re_1 = 0.004 \Omega$ $xe_1 = 0$ $re_2 = 0.002 \Omega$ xe_2 No. 1 transformer is of 500	= 0.012 Ω KVA and No. 2 is of 1000 KVA. To It they share a load of 1500 KVA	hey are connected for	10
		(b)		ole cage induction motors. tor at rated voltage, voltage and fre		10

resistance and rotational losses and assume const. rotor resistance.

(i) Slip at full load http://www.howtoexam.com (ii) Slip at max torque

Determine: