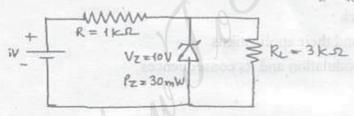
http://www.howtoexam.com V-Ex-1009-E-Scan-72 Con. 2756-09.

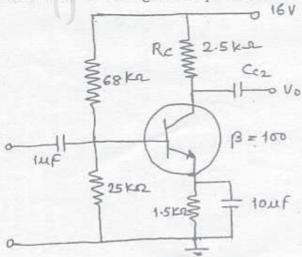
SE(Elect) sem III (old) Basic Electronics

VR-3048

(OLD COURSE)


consequent of the side and forms 20 = (3 Hours)

Page (1) [Total Marks: 100


- N.B.: (1) Question No. 1 is compulsory. Solve any four questions out of remaining six questions.
 - (2) Assume suitable data wherever required.
 - (3) Figures to the right indicate full marks.
- 1. (a) Define the terms of FET:—

 (i) Pinch-off voltage

 (ii) Trans-conductance
 - (iii) Drain resistance.
 - (b) Differentiate between BJT and FET.
 (c) Differentiate between Series Voltage Regulator and Shunt Voltage Regulator.
 - (d) Explain the construction of a Solar cell.
- (a) Draw circuit diagram of full wave rectifier with CLC filter.
 Explain its working with neat sketches. Derive relation for ripple factor.
 - (b) Define polarization and explain the different types of polarizations in dielectrics. 10
- 3. (a) For the zener diode circuit shown below, determine V_L, V_R and P_z.

- (b) Compare Fixed bias with collector to base bias in case of BJT.
- (c) In the circuit shown in figure, determine the co-ordinates of operating point of 10 the transistor. Draw the DC load line on output characteristics and show the location of Q point. Comment on the region of operation.

[TURN OVER

Con. 2756-VR-3048-09.

Basic Electron

III mee (tos/1) 3 a

4. (a) Give the methods used for biasing the JFET with operating points.

8

- (b) Explain the procedure for designing a single stage CS amplifier for audio frequency 12 range using zero temperature drift.
- Design a single stage R-C coupled CE amplifier using the transistor BC147A to meet 20 the following:—

$$| \text{ Av } | \ge 180, \ V_0 = 3 \text{ V}, \ \text{S}_{\text{ICO}} \le 10, \ \text{f}_{\text{L}} = 20 \ \text{Hz}, \ \text{V}_{\text{CC}} = 18 \ \text{V}.$$

Given: Data for BC 147A:-

$$IC_{max} = 0.1 \text{ Amp, } Pd_{max} = 0.25 \text{ W, } h_{FE}(TYP) = 180,$$

 $h_{fe}(typ) = 220, h_{ie} = 2.7 \text{ k}\Omega.$

Calculate Ri, Ro and Av of the designed circuit.

- (a) Draw a circuit diagram of the full dual clipper circuit to have clipping levels
 of ± 5V. Explain its operation with the help of appropriate waveforms and transfer
 characteristics.
 - (b) Explain the Hall effect and derive the expression for Hall coefficient.

10

7. Write notes on following:-

20

- (a) Types of capacitors
- (b) BJT as a switch
- (c) Thermistors and their applications
- (d) Base width modulation and its consequences.