(b) If
$$f(z) = \int_{A}^{A} F(t) e^{itz} dt$$
, where $0 < A < \infty$

and $F \in L^2(-A,A)$ prove that $\left| f(z) \right| \leq C e^{|A|Z}$ where

$$C = \int_{-A}^{A} |F(t)| dt.$$

MPL-636 RMS-03

M.Phil. DEGREE EXAMINATION - JUNE 2006.

Mathematics

Paper III – FOURIER TRANSFORMS

Time: 3 hours

Maximum marks: 75

Answer any FIVE questions.

Each question carries 15 marks.

- (a) Prove that the interval (a, ∞) is measurable.
- (b) Prove that the outer measure of a set is translation invariant.
- 2. (a) Prove that every Borel set is measurable.
- (b) Let $\langle E_i \rangle$ be a sequence of disjoint measurable sets and A any set. Then prove that $m^*(An\tilde{U}E_i) = \overset{\sim}{\sum} m^*(AnE_i)$.
- (a) Prove that Lebesque measure is invariant under translation modulo 1.
- (b) State and prove one version of Littlewood's third principle.

- 4. (a) Let $\{f_n\}$ be a sequence of measurable functions on R, and suppose that
- (i) $0 \le f_1(x) \le f_2(x) \le \dots < \infty$ for every $x \in R$,
- (ii) $f_n(x) \to f(x)$ as $n \to \infty$, for every $x \in R$. Then prove that f is measurable, and $\int f_n d_\mu \to \int f d_\mu$ as $n \to \infty$.
- (b) Prove that if f is a real function on R such that $\{x: f(x) \ge r\}$ is measurable for every rational number r, then f is measurable.
- 5. (a) Suppose $\{f_n\}$ is a sequence of complex measurable functions defined a.e. on R such that

$$\sum_{n=1}^{\infty} \int_{R} |f_n| d\mu < \infty.$$
 Then prove that the series
$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$
 converges for almost all x ,

$$f\in L^{1}\left(\mu
ight) \ ext{and} \ \sum_{n=1}^{\infty}\int\limits_{R}f_{n}\ d\mu=\int\limits_{R}f\ d\mu\,.$$

(b) Let $\{E_R\}$ be a sequence of measurable sets in R , such that $\sum_{n=1}^\infty \mu(E_R) < \infty$.

Then prove that almost all $x \in R$ 1 ie in at most finitely many of the sets E_R .

6. (a) Let (X,ζ,μ) and (Y,\Im,λ) be σ -finite measure spaces. Suppose $Q\in\zeta\times\Im$. If

- (b) Prove that in Fubini's theorem the requirement that " σ -finiteness of measure spaces" cannot be dispensed with.
- 7. If f and g are in L'(R') prove that the convolution h of f and g is also in L'(R') and that $||h||_1 \le ||f||_1 ||g||_1$.
- 3. (a) If $f \in L'$ then prove that $\hat{f} \in C_0$.
- (b) State and prove the Inversion theorem.
- 9. State and prove the Plancherel Theorem.
- 10. (a) Let $F \in L^2(0, \infty)$ and let

$$f(z) = \int_{0}^{\infty} F(t) e^{itz} dt, z \in \pi^{+}$$

where $\pi^+ = \{z = x + iy : y > 0\}$. Then prove that f is holomorphic in π^+ and its restriction to horizontal lines in π^+ form a bounded set in $L^2(-\infty,\infty)$.