- 7. (a) State and prove the spectral theorem for compact self-adjoint operators.
- (b) Let A be a self-adjoint operator on H, $u\in c$ ([$m_A,\ m_A$]) and $U(A)\in BL(H)$. Prove that

$$||U(A)|| = \sup\{|u(t)|: t \in S(A)\}.$$

MPL-637

RMSD

M.Phil. DEGREE EXAMINATION – JUNE 2006

Mathematics

SPECTRAL THEORY

Time: 3 hours

Maximum marks: 75

Answer any FIVE questions.

Each question carries 15 marks.

- 1. (a) Let $\{U_n : n = 1, 2, 3, \dots\}$ be an orthonormal set in a Hilbert Space H. For a sequence (K_n) of scalars, prove that the following are equivalent.
- (i) There exists $x \in H$ such that for $n=1,\; 2,\; 3, \cdots \; \left\langle \; x,\; U_n \; \right\rangle = K_n$.
 - (ii) $\sum_{n=1}^{\infty} |K_n|^2 < \infty \text{ and }$
 - (iii) $\sum_{n=1}^{\infty} K_n U_n$ converges in H.

(b) Let $\{x_n : n = 1, 2, 3\dots\}$ be an orthogonal set in H. Then prove that $\sum_{i=1}^{\infty} x_n$ converges in H if and only

if
$$\sum_{n=1}^{\infty} \|x_n\|^2 < \infty$$
.

- State and prove unique Hahn-Banach extension theorem.
- (b) If (x_n) is a sequence in H such that $(\langle x_n, y \rangle)$ converges for every $y \in H$ then prove that there is a unique $x \in H$ such that (x_n) converges weakly to x in H.
- 3. (a) Let A be an operator on a Hilbert space H. Suppose there is an operator B on H such that $\langle A(x), y \rangle = \langle x, B(y) \rangle$ for all $x, y \in H$. Then prove that
 - (b) Let $A \in BL(H)$. Then prove that

A is bounded and $B = A^*$.

- (i) A is unitary if and only if ||A(x)|| = ||x||for all $x \in H$ and A is onto.
- (ii) A is normal if and only if $||A(x)|| = ||A^*(x)||$ for all $x \in H$.

- 4. (a) Prove that $A \in BL(H)$ is invertible in BL(H) iff A is bounded below and the range of A i dense in H.
 - (b) Let K = C. If $A \in BL(H)$, then prove that
 - (i) $||A|| \le 2R_A$ and
 - (ii) $R_A^2 \le (RA)^2$.
- (a) Let K = C and A be a normal operator Prove that $||A|| = R_A = r_A$.
- (b) Let H be an n-dimensional Hilbert Space over K, and $A \in BL(H)$. Prove that there is an orthonormal basis for H consisting of eigen vectors of A iff A is normal in K=C and iff A is self-adjoint in K=R.
- (a) Let A be a non-zero compact self-adjoint operator on a real or complex Hilbert space. ||A|| or $-\|A\|$ is an eigen value of A. Prove that there are only

a finite number of linearly independent eigen vectors

- corresponding to this eigen value. (b) Prove that a compact self-adjoint operator on
- a Hilbert space is positive iff all of its eigen values are non-negative.