
3. Find the equation of the plane through the point $(1,2,4)$ and parallel to the plane $2 x+6 y-8 z+9=0$.
4. Find the angle between the straight lines

$$
\frac{x-1}{4}=\frac{y+1}{3}=\frac{z-1}{1} \text { and } \frac{x-2}{3}=\frac{y+4}{1}=\frac{z-4}{5} .
$$

5. Find the equation of the sphere having centre at $(7,4,-3)$ and radius 6 .
6. Show that
$\vec{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{i}+(3 x z+2 x y) \hat{j}+(3 x y-2 x z+2 z) \hat{k}$
is irrotational and solenoidal.
7. If $\vec{F}=3 x y \hat{i}-y^{2} \hat{j}$, evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the curve on the $x y$ plane $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.
8. Prove that $\operatorname{div}\left(\frac{\vec{r}}{r}\right)=\frac{2}{r}$, if $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.

$$
\begin{aligned}
& \text { PART B }-(5 \times 10=50 \text { marks }) \\
& 2 \quad \text { UG-446/UG-449 }
\end{aligned}
$$

Answer any FIVE questions.
Each question carries 10 marks.
9. If $\tan \frac{x}{2}=\tanh \frac{y}{2}$ prove that
(a) $\sinh y=\tan x$ and
(b) $y=\log \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)$.
10. Sum to n terms the series

$$
\sin ^{2} \alpha+\sin ^{2} 2 \alpha+\sin ^{2} 3 \alpha+\ldots
$$

11. Find the equation of the plane through the points $(2,2,1)$ and $(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$.
12. Prove that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x+1}{2}=\frac{y-2}{4}=\frac{z-2}{5}$ are coplanar, find the equation of the plane containing them.
13. Find the equation of the tangent plane to the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y-6 z+5=0$ at the point $(2,2,-1)$.
14. Show that the equation

$$
3 \quad \text { UG-446/UG-449 }
$$

$$
2 x^{2}+2 y^{2}+7 z^{2}-10 y z-10 z x+2 x+2 y+26 z-17=0
$$ represents a cone. Find the co-ordinates of the vertex.

15. Find the directional derivative of $x y z-x y^{2} z^{3}$ at the point $(1,2,-1)$ in the direction of the vector $\hat{i}-\hat{j}-3 \hat{k}$.
16. If $\vec{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$, evaluate $\iint_{S} \vec{F} \cdot \vec{n} d S$ where S is the surface of the cube bounded by $x=0, x=1$, $y=0, y=1, z=0, z=1$.

