UG-320

BMS-08

B.Sc. DEGREE EXAMINATION – JUNE 2008.

(AY 2005–2006, CY 2006 batches only)

Third Year

Mathematics

LINEAR ALGEBRA AND NUMBER SYSTEM

Time : 3 hours

Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

Each question carries 5 marks.

1. Define vector space over a field. Give an example.

2. If $\{u, v, w\}$ is linearly independent in a vector space, prove that $\{u+v, u-v, u-2v+w\}$ is also linearly independent.

3. Compute the inverse of the matrix $\begin{pmatrix} 2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{pmatrix}$.

4. Verify the Cayley-Hamilton theorem for the matrix $\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$.

5. Find the rank of the matrix $\begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \\ 2 & 2 & 2 \end{pmatrix}$.

6. Prove that the number of primes is infinite.

7. Find the reminder when 2^{1000} is divisible by 17 is 1.

8. Prove that for any integer n, $n^5 - n$ is divisible by 30.

PART B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

Each question carries 10 marks.

9. If S is a non empty subset of a vector space V over a field F, prove that

(a) L(S) is a subspace of V

(b) $S \subseteq L(S)$

(c) L(S) is the smallest subspace of V containing S.

2 UG-320

Explain Gram-Schmidt orthogonalisation process. 10. Using it find the orthonormal basis of $V_3(R)$ with the basis $\{(2, -1, 0), (4, -1, 0), (4, 0, -1)\}$.

Define orthogonal complement of a subset S of an 11. inner product space V and prove that it is a subspace.

12.If A and B are two $m \times n$ matrices prove that

> (a) $\left(A^T\right)^T = A$ (b) $(A+B)^T = A^T + B^T$.

12. If A and B are two
$$m \times n$$
 matrices prove that
(a) $(A^T)^T = A$
(b) $(A+B)^T = A^T + B^T$.
13. (a) Prove that $A = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$ is orthogonal
matrix.
(b) Prove that $||x + y|| \le ||x|| + ||y||$.

matrix.

- Prove that $||x + y|| \le ||x|| + ||y||$. (b)
- Find the eigen values and eigen vectors of 14.

$$\begin{pmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{pmatrix}$$

- State and prove Wilson's theorem. 15.
- Prove that $712! + 1 \equiv 0 \pmod{719}$. 16.

