UG-320 BMS-08

B.Sc. DEGREE EXAMINATION JUNE 2008.
(AY 2005-2006, CY 2006 batches only)
Third Year

Mathematics

LINEAR ALGEBRA AND NUMBER SYSTEM

Time : 3 hours Maximum marks : 75

PART A - $(5 \times 5=25$ marks $)$

Answer any FIVE questions.

Each question carries 5 marks.

1. Define vector space over a field. Give an example.
2. If $\{u, v, w\}$ is linearly independent in a vector space, prove that $\{u+v, u-v, u-2 v+w\}$ is also linearly independent.
3. Compute the inverse of the matrix $\left(\begin{array}{ccc}2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right)$.
4. Verify the Cayley-Hamilton theorem for the $\operatorname{matrix}\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$.
5. Find the rank of the matrix $\left(\begin{array}{lll}2 & 3 & 4 \\ 3 & 1 & 2 \\ 2 & 2 & 2\end{array}\right)$.
6. Prove that the number of primes is infinite.
7. Find the reminder when 2^{1000} is divisible by 17 is 1 .
8. Prove that for any integer $n, n^{5}-n$ is divisible by 30.

PART B - ($5 \times 10=50$ marks $)$
Answer any FIVE questions.
Each question carries 10 marks.
9. If S is a non empty subset of a vector space V over a field F, prove that
(a) $\quad L(S)$ is a subspace of V
(b) $S \subseteq L(S)$
(c) $L(S)$ is the smallest subspace of V containing S.
10. Explain Gram-Schmidt orthogonalisation process. Using it find the orthonormal basis of $V_{3}(R)$ with the basis $\{(2,-1,0),(4,-1,0),(4,0,-1)\}$.
11. Define orthogonal complement of a subset S of an inner product space V and prove that it is a subspace.
12. If A and B are two $m \times n$ matrices prove that
(a) $\left(A^{T}\right)^{T}=A$
(b) $\quad(A+B)^{T}=A^{T}+B^{T}$.
13. (a) Prove that $A=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is orthogonal matrix.
(b) Prove that $\|x+y\| \leq\|x\|+\|y\|$.
14. Find the eigen values and eigen vectors of

$$
\left(\begin{array}{ccc}
3 & 10 & 5 \\
-2 & -3 & -4 \\
3 & 5 & 7
\end{array}\right)
$$

15. State and prove Wilson's theorem.
16. Prove that $712!+1 \equiv 0(\bmod 719)$.

3
UG-320

