UG-467 BMS-04

B.Sc. DEGREE EXAMINATION JANUARY 2009.

(AY - 2005-06 and CY - 2006 batches only)
Second Year
Mathematics
MODERN ALGEBRA
Time : 3 hours
Maximum marks : 75

SECTION A - ($5 \times 5=25$ marks $)$

Answer any FIVE questions.

1. If the Function $f: R \rightarrow R$ is given by f © x^{2} and $g: R \rightarrow R$ is given by $g<=\sin x$, find $\subset \circ f($ and $\circ g \int$ and show that they are not equal.
2. If H and K are subgroups of a given group G, then prove that $H \cap K$ is also a subgroup of G.
3. How many generators are there for a cyclic group of order 10 ?
4. If n is any integer and $(, n=1$ then prove that $a^{\phi-C^{-}} \equiv 1\left(\bmod n^{-}\right.$.
5. Prove that every subgroup of an abelian group is a normal subgroup.
6. If $f: G \rightarrow G^{\prime}$ is a homomorphism then show that f is one to one if and only if $\operatorname{ker} f=\boldsymbol{\ell}_{\boldsymbol{G}}$.
7. Prove that the set of all matrices of the form $\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right)$ where $a, b \in R$ is a ring under matrix addition and multiplication.
8. If R is a commutative ring with identity then prove that R is an integral domain if and only if cancellation law is valid in R.

SECTION B - $(5 \times 10=50$ marks $)$
Answer any FIVE questions.
9. If A and B are two subgroups of a group G then prove that $A B$ is a subgroup of G if and only if $A B=B A$.
10. If G is a group and $a \in G$ then prove that the order of a is the same as the order of the cyclic group generated by a.
11. Prove that a group G has no proper subgroups if and only if it is a cyclic of prime order.
12. If a group G has exactly one subgroup H of given order then prove that H is a normal subgroup of G.
13. Prove that any finite group is isomorphic to a group of permutations.
14. State and prove the fundamental theorem of homomorphism.
15. Prove that any finite integral domain is a field.
16. Prove that any integral domain D can be embedded in a field F and every element of F can be expressed as a quotient of two elements of D.

