UG-470

BMS-07

B.Sc. DEGREE EXAMINATION – JANUARY 2009.

(AY - 2005-06 and CY - 2006 batches only)

Third Year

Mathematics

REAL AND COMPLEX ANALYSIS

Time: 3 hours Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

Each question carries 5 marks.

- 1. Prove that in any metric space, the union of any family of open sets is open.
- 2. Define a convergent sequence. Show that for a convergent sequence \P_n the limit is unique.
- 3. If (M, d) is a metric space and $a \in M$, prove that the functions $f: M \to R$ defined by $f \bullet = d \bullet , a$ is continuous.

- 4. Show that any discrete metric space with more than one point is disconnected.
- 5. Show that the function $f = \frac{\overline{z}}{z}$ does not have a limit as $z \to 0$.
- 6. Find the bilinear transformation which maps the points z = -1, 1, ∞ respectively on w = -i, -1, i.
- 7. State and prove Lioville's theorem.
- 8. Define residue of f(z) at an isolated singularity calculate the residues of $\frac{z+1}{z^2-2z}$ at its poles.

PART B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

Each question carries 10 marks.

- 9. State and prove Minkowski's inequality.
- 10. Show that l_2 is complete.
- 11. Prove that f is continuous if and only if inverse image of every open set is open.
- 12. Show that any compact subset A of a metric space (M, d) is closed.

2

UG-470

- 13. Show that the points z_1 and z_2 are reflection points for the line $\overline{\alpha}z + \alpha\overline{z} + \beta = 0$ if and only if $\overline{\alpha}z_1 + \alpha\overline{z}_2 + \beta = 0$.
- 14. State and prove a sufficient condition for differentiability of complex valued function.
- 15. State and prove Taylor's theorem.
- 16. State and prove Rouche's theorem.

Hom Con

3