UG-476 BMS-12/ BMC-12

B.Sc. DEGREE EXAMINATION — JANUARY, 2009.

First Year

(AY 2006-07 batch onwards)

Mathematics

TRIGONOMETRY, ANALYTICAL GEOMETRY OF THREE DIMENSIONS AND VECTOR CALCULUS

Time : 3 hours

Maximum marks : 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

Each question carries 5 marks.

1. Prove that
$$\frac{\sin 5\theta}{\sin \theta} = 16 \sin^4 \theta - 20 \sin^2 \theta + 5$$
.

- 2. Prove that $1-\tanh^2 x = \operatorname{sech}^2 x$.
- 3. If $\frac{\tan\theta}{\theta} = \frac{2524}{2523}$, find θ approximately.

- 4. Find the equation to the plane through (2,-4,5) and is parallel to the plane 4x+2y-7z+6=0.
- 5. Find the straight line through (3,2,-8) and perpendicular to -3x + y + 2z 2 = 0.
- 6. Find the centre and radius of the sphere $7x^2 + 7y^2 + 7z^2 + 28x - 42y + 56z + 3 = 0$.
- 7. Find unit vector normal to the surface $x^2 + 2y^2 + z^2 = 7$ at (1,-1,2)
- 8. Prove that $\operatorname{curl} (\operatorname{grad} \phi) = \overline{0}$.

PART B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

Each question carries 10 marks.

9. Prove that

 $2^5\cos^6\theta = \cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10.$

10. If $\cos(x+iy) = \cos a + i \sin a$ prove that $\cos 2x + \cosh 2y = 2$.

2

11. Sum the series $\sin\theta + \frac{\sin 2\theta}{2} + \frac{\sin 3\theta}{3} + \dots \infty$.

UG-476

12. Find the equation of the plane through (2,-3,1) and is perpendicular to the line joining the points (3,4,-1) and (2,-1,5).

13. Show that the lines $\frac{x+3}{2} = \frac{y+5}{3} = \frac{3-7}{-3}$ and $\frac{x+1}{4} = \frac{y+1}{5} = \frac{3+1}{-1}$ are coplanar and find the equation of the plane containing them.

14. Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1,2,3).

15. Show that $\overline{F} = yz\hat{i} + 3x\hat{j} + xy\hat{k}$ is irrotational. Find ϕ so that $\overline{F} = \nabla \phi$.

16. Show that Green's theorem in a plane can be deduced as a special case of Stoke's theorem.

3

UG-476