UG-471 BMS-08
B.Sc. DEGREE EXAMINATION - JANUARY 2009.
Third Year
(A.Y. 2005-06 and C.Y. 2006 batches only)
Mathematics
LINEAR ALGEBRA AND NUMBER SYSTEM
Time : 3 hours Maximum marks: 75
PART A $-(5 \times 5=25$ marks $)$
Answer any FIVE questions.

1. Prove that the set of complex numbers C is avector space over the field \mathbf{R}.
2. Define inner product space. Give an example.
3. Compute the inverse of the matrix $\left(\begin{array}{ccc}3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right)$.
4. Verify Cayley-Hamilton theorem for the matrix $\left(\begin{array}{ccc}2 & -1 & 1 \\ 1 & 0 & 2 \\ 3 & -1 & 3\end{array}\right)$.
5. Find the rank of the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2\end{array}\right)$.
6. Find the smallest number with 18 divisors.
7. Show that $x^{5}-x$ is divisible by 30 .
8. Show that $7^{2 n}+16 n-1 \equiv 0(\bmod 64)$.

PART B - (5 $\times 10=50$ marks $)$
Answer any FIVE questions.
9. Let V be a vector space over a field F. Let $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\} \subseteq V$. Prove that the following are equivalent
(a) S is a basis for V.
(b) S is a Maximal linear independent set
(c) S is a minimal generating set.
10. If V is a finite dimensional vector space over a field F and W is a subspace of V, prove that $\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.

UG-471
11. Apply Gram-Schmidt process to construct orthonormal basis from the basis $\{(1,0,1),(1,3,1)$, $(3,2,1)\}$.
12. Find the eigen values and eigen vectors of the $\operatorname{matrix}\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$.
13. Reduce the matrix $\left(\begin{array}{cccc}2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2\end{array}\right)$ to its normal form.
14. Define Eulers ϕ-function. Find the value $\phi(N)$, if $N=p^{a} q^{b} r^{c} \cdots$ where p, q, r, \cdots are all primes and a, b, c, \cdots are integers.
15. State and prove Fermat's theorem.
16. Show that $28!+233 \equiv 0(\bmod 899)$.

UG-471

