This question paper contains 4 printed pages]

Z-216-2011

FACULTY OF ENGINEERING

F.E. (Gen.) EXAMINATION

MAY/JUNE, 2011

(New Course)

ENGINEERING PHYSICS

(Saturday, 28-5-2011)

Time : 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks-80

- N.B. := (i) Use separate answer-book for each Section.
 - (ii) Question No. 1 in Section A and Question No. 5 in SectionB are compulsory.
 - (iii) Attempt any two other questions from Section A and Section B each.
 - (iv) Non-programmable calculator is allowed.
 - (v) Figures to the right indicate full marks.

Section A

- 1. Attempt any four of the following :
 - (i) Define reverberation and reverberation time. A cinema hall has a volume of 7500 m³. It is required to have reverberation time of 1.5 second. What should be the total absorption in the hall ?

P.T.O.

16

WT		(2) Z—216—2011
	(ii)	Define mass defect, binding energy and atomic mass unit
-	(iii)	Explain the phenomena of interference. What is constructive
	-	and destructive interference ?
	(iv)	Explain any two applications of CRO.
	(v)	What are cathode rays ? Mention their properties.
2.	(a)	What is Zeeman effect ? Obtain necessary expression for
		Zeeman shift.
100.00	(b)	Explain different types of sound absorbing material in
		detail. 6
3.	(a)	Derive an expression for e/m of an electron using crossed
		electric and magnetic field in a cathode ray tube. 6
	(b)	Define magneto striction effect and Piezoelectric effect. An
		ultrasonic source of 0.07 MHz sends down a pulse towards
1		the seabed which returns after 0.065 sec. The velocity of
		sound in sea water is 1700 m/sec. Calculate depth of sea

WT (3) Z-216-2011 4. (a)Explain the formation of Newton's ring and show that radii of dark rings are proportional to underroot of natural number. 6 (b) Explain Nuclear fission in natural Uranium. 6 Section B Attempt any four of the following : 16 5. (i) Define Fresnel and Fraunhofer diffraction and distinguish between them. What is Heisenberg's uncertainty principle ? (ii)(iii) State and explain Brewister's law. Calculate the numerical aperture, acceptance angle and the (iv)critical angle of the fibre having refractive index of core $(n_1 = 1.5)$ and refractive index of cladding $(n_2 = 1.45)$. Write any four applications of Laser. (v)What is the significance of critical temp., critical magnetic 6. (a)field and critical current density for superconductor ? 6 (b) Explain with neat diagram working of Bragg's X-ray 6 spectrometer. P.T.O.

WT	(4) Z—216—2011	
7. (a)	Explain the construction and working of semiconductor	
	laser. 6	1.1
• • • • • •		
(b)	Describe and explain Davisson and Germer experiment for	
	the determination of wavelength of electron. 6	
8. (<i>a</i>)	Derive an expression for numerical aperture and state the	
	relation between numerical aperture and fractional refractive	
	index change. 6	
(<i>b</i>)	Describe plane of polarisation and plane of vibration	
	Explain optical method to show that light waves are	
	transverse. 6	
	ALAN	

Z-216-2011

4