Code No.: 10013

FACULTY OF ENGINEERING

B.E. II/IV Year (ECE) I Semester (Supplementary) Examination, April 2006

ELECTRONIC DEVICES

Time: 3 Hours] [Max. Marks: 75

Answer **all** questions in Part A and any **five** questions from Part B.

Assume reasonable values of data wherever necessary.

Part A – (Marks: 25)

1. Define the term current density J. What is the expression for J in terms of electron density and velocity? 3 2. Define 'ripple factor' and % regulation in rectifiers. 2 3 3. Explain the term thermal 'runaway'. What are the differences between MOSFET and JFET? 2 What are the differences between light emitting diode and liquid crystal display? 3 Compare CC and CE configuration of transistor. 3 7. How UJT can be used as a relaxation oscillator? 3 Explain gain bandwidth product of BJT and FET. 2 9. In the case of collector to base bias circuit, if $\beta = 40$, $R_{\rm o} = 4.7 \text{ k}\Omega$ and $R_{\rm o} = 80 \text{ K}\Omega$, determine the value of stability factor S. 10. If α of a BUT is 0.99, determine its value of β . 2

Part B – (Marks: $5 \times 10 = 50$)

- 11. (a) Derive the expression for the trajectoy of an electron in uniform retarding field, when the initial velocity is making an angle 'θ' with the field.
 - (b) A charged particle having thrice the charge and mass twice that of an electron is accelerated through a potential difference VA of 50 volts, before it enters a uniform magnetic field of flux density B of magnitude 0.02 webers/m² normally with the field find.
 - (i) The velocity of charged particle between entering the field.
 - (ii) Radius of the path
 - (iii) Time of one revolution.

5

气罐头 计第三

5

- 12. (a) Explain the V-I characteristics of P-n junction diode. Derive the equation for diode current.

 5
- (b) In a P-N junction Ge diode, find the value of the voltage for which the reverse current I_O will reach 75% saturation value at the room temperature it is said 5
- 13. (a) Derive the relation between α and β parameters of CB and CE operated transistors.
 - (b) Sketch the profiles of majority and minority carrier currents in the base of an NPN transistor. Explain the transistor action with the help of these profiles. 5
- 14. (a) Derive the relationship between I_{DS} , I_{DSS} and V_{GS} in a JFET and plot the transfer characteristics.

(b) Explain how JFET acts as a voltage variable resistor at low VDS values.

- 15. (a) Draw the hybrid-π equivalent circuit of CE transistor at high frequencies. Derive expressions for the feedback conductance gb'c and output conductance gce. 5
 (b) A junction transistor is to operate at the following operating point I_{CO}= 2mA.
- (b) A junction transistor is to operate at the following operating point $I_{CQ}=2mA$, $V_{CEQ}=20V$ and $I_{BQ}=20\mu A$. The following values for this operating point are the specifications of the transistor. $\beta_0=100$, $f_T=50$ MHz, $c_{ob}=3pf$, $h_{te}=1.4K\Omega$, $h_{re}=2.5\times10^{-4}$, $h_{oe}=20~\mu$ mhos. Determine the hybrid- π model parameters of the transistor. Assume that the operating temperature is 300° K.
- 16. (a) Draw the circuit of a bridge rectifier and compare its performance with a full wave rectifier circuit using a mains transformer with centre tapped secondary winding.
- (b) No load output voltage for a rectifier with L-section filter is $2Vm/\pi$. Mention whether it is used with HWR or an FWR circuit.
- 17. (a) Draw the biasing circuits of MOSFET and explain.
- (b) Draw the characteristics of a MOSFET and explain its modes and regions of operation.

 Find information about best Medical, Engineering, and Management colleges