http://www.howtoexam.com

Code No.: 10293

FACULTY OF ENGINEERING

B.E. III/IV Year (ECE) I Semester (Supplementary) Examination, May 2006 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

Time: 3 Hours] [Max. Marks: 75

Answer **all** questions of Part A. Answer **five** questions from Part B.

Part A - (Marks : 25)

- List the Op Amp parameters that are important for ac applications. What are their practical significance.
- 2. Obtain the output expression for the following circuit

- 3.4 What is all pass filter? Where and why is it needed?
- 4. What are the advantages of active filters over passive ones.
- 5. State the relationship between lock range and capture range through a mathematical expression and explain.
- 6. Calculate the frequency of oscillation of a IC 566 VCO for external components $R_i = 6.8 \text{K}\Omega$, $C_T = 470 \text{ pf}$. Assume other component values if necessary and draw the circuit.
- 7. Show the principle of operation of current sweep generator.
- 8. Draw the functional diagram of IC 8038 and mention its important features.
- 9. List the specifications of an IC voltage regulator and explain their importance.
- 10. For an 8-bit DAC with an output range 0–2.55V, define its resolution in at least two

300 St. 683

Part B – (Marks :
$$5 \times 10 = 50$$
)

11. (a) In the circuit shown below calculate the amplitude of common mode voltage $V_{\rm cm}$. If the induced 60Hz noise at the output is 5V(rms).

- (b) Define input offset and output offset voltage of an Op Amp. Draw the differential amplifier with offset voltage compensating network and explain its operation.
- 12. (a) Draw the frequency response curve of a differentiator. How is it modified when a small resistor is connected in series with the capacitor.
 - (b) Design a difference amplifier (using one Op Amp). Such that $V_0 = V_2 3V_1$ and $Ri_1 = Ri_2 = 100$ K.
- 13. (a) Draw the circuit of a second order narrow band-pass filter and derive an expression for its transfer function.
 - (b) Design a fourth order butterworth high pass active filter for a cutoff frequency of 2.5 kHz with a pass-band gain of '6'.
- 14. (a) Draw the circuit of a Schmitt trigger which is required to compare the input signal against the fixed reference of +2V. The output is to switch states whenever input goes below or above 2V by 0.5 mV. The input source is 50Ω . Current $I_b = 0.5\mu V$. Common mode input (max) is 5V. Assume offset is '0'.
 - (b) Draw the internal functional diagram of IC 555 and explain the functions of each P in.
- 15. (a) Design the circuit of IC 7805 voltage regulator for 5V at 1.5Amp load current. 4
 - (b) Draw the circuit of a IC 723 voltage regulator for 6V at 200ma. Explain the current fold back feature of this IC voltage regulator.
- 16. (a) Design an PLL circuit using IC 565 for a free running frequency of 400kHz and a capture range of $\pm 10kHz$ with a supply voltages of $\pm 6V$.
 - (b) Explain at least three application of PLL in detail.
- 17. (a) Explain the working of R-2R ladder type DAC circuit.
 - (b) A dual slope ADC uses a 16-bit counter and 1MHz clock rate. The maximum input voltage is +10V. The maximum integrator output voltage should be -8V. When it counts 2n counts with $C=0.1\mu f$ find the value of the integrating resistor.