M V S R Engg. College. **HYDERABAD**

Code No. 11329

FACULTY OF ENGINEERING

B.E. 3 / 4 (ECE.) Il Semester (Supplementary) Examination, December 2006

Subject: Antennas and Propagation

Time: 3 Hours) {Max. Marks: 75

ege

•.	Note: Answer All questions of Part – A and Answer any five question	
	from Part-B.	IRY
	PART - A (25 Marks) M V S R Enge	
1.	What is the directivity of half wave dipole and if it is 90 % efficient, calculate gain.	(2)
2.	What is the first side lobe level of a uniform linear array and sketch the radiation pattern?	
3.	An antenna receives 2 µ w of power when the incident wave has an associated electric field of 20 mv/m ms. Find the aperture	
4.	area. Define antenna efficiency. Given $R_L = 36.5 \Omega$ find efficiency of	(3)
5.	quarter wave monopole. What is the radio horizon distance for standard atmosphere in	(2)
6.	kilometers? Define vertical height of ionospheric layer and likip distance of	(2)
7.	lonospheric layer .	(3)
	What is the impedance of reflector in Yagi – uda antenna. Compare with director elements.	(3)
8.	Find the null-to-null beam width of 2m paraboloid reflector used at 5 GHz.	(2)
9.	Draw a typical non-radiating slot in the rectangular wave guide. Why it is non-radiating slot?	(3)
10.	How do you increase the radiation resistance by folding the dipole What is radiation resistance of folded dipole?	
	PART - A (50 Marks)	
11.(8	a) Define filed strength and power patterns of antenna.	(4)
(t	Derive an expression for the radiated power of half-wave dipole.	(6)

12.(a) Explain the salient features of uniform linear arrays.	(6)
(b) Find out the basic transmission loss between a ground based of antenna and air bone antenna when the distance between the antennas are 16 and 160 km at *f = 0.3 GHz.	on (4)

- 13.(a) Draw a typical log-periodic antenna and explain its design methodology. (5)
 - (b) Design a log-periodic antenna to obtain a gain of 9 dB to operate over a frequency range of 125 MHz - 500 MHz (Assume T = 0.861 $\sigma = 0.162$). (5)
- 14 (a) Explain the salient features of horn antenna. (2)
 - (b) State Babinets principle and explain. (5)
 - (c) A parabolic reflector with a mouth diameter of 22 m operates at f = 5 GHz. If has an illumination efficiency of 0.6. Find the power gain.

(3)

- 15.(a) Bring out the differences between indoor and outdoor ranges. (4)
 - (b) Describe a method of measurement of antenna impedance. (6)
- 16.(a) What is a Troposphere. Derive the expression for the field strength at a point due to space wave. (6)
 - (b) A communication system is to be established at a frequency of 60 MHz with a transmitter of 1.0 kw. The field strength of the directive antenna is 3 times that of a half-wave antenna. Ht = 50 m, hr = 5m,. A field strength of 80 v/m is required to give satisfactory reception. Find the range of the system.
- 17. Write short notes on the following :

(3+3+4)

(a) Fading

LIBRART MVSR Engg. College. HYDERABAD

(b) Ground Wave Propagation

(c) Binomial array
